14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$µÄÓÒ½¹µãΪF£¬µãPÔÚÍÖÔ²ÉÏ£¬ÇÒPF¡ÍxÖᣬ|PF|=$\frac{1}{2}$£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôP1P2ÊÇÍÖÔ²Éϲ»Í¬µÄÁ½µã£¬P1P2¡ÍxÖᣬԲE¹ýF£¬P1£¬P2Èýµã£¬ÇÒÍÖÔ²ÉÏÈÎÒâÒ»µã¶¼²»ÔÚÔ²EÄÚ£¬ÇóÔ²EµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÉèF£¨c£¬0£©£¬x=c´úÈëÍÖÔ²·½³Ì£¬½âµÃ|PF|£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬½â·½³Ì¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬µãEÔÚxÖáÉÏ£¬ÉèµãE£¨t£¬0£©£¬Ô²EµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬ÓÉ´ËÀûÓÃÄÚÇÐÔ²¶¨Òå½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÉèF£¨c£¬0£©£¬Áîx=c£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ
y2=b2£¨1-$\frac{{c}^{2}}{{a}^{2}}$£©£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬
ÓÉÌâÒâ¿ÉµÃ£¬$\frac{{b}^{2}}{a}$=$\frac{1}{2}$£¬$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬
½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£®
¡àÍÖÔ²·½³ÌÊÇ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÒÔÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬
µãEÔÚxÖáÉÏ£¬ÉèµãE£¨t£¬0£©£¬
ÔòÔ²EµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬
ÓÉÄÚÇÐÔ²¶¨ÒåÖªµÀ£¬ÍÖÔ²Éϵĵ㵽µãE¾àÀëµÄ×îСֵÊÇ|P1E|£¬
ÉèµãM£¨x£¬y£©ÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬
Ôò|ME|2=£¨x-t£©2+y2=$\frac{3}{4}$x2-2tx+t2+1£¬
µ±x=mʱ£¬|ME|2×îС£¬¡àm=-$\frac{-2t}{\frac{3}{2}}$=$\frac{4t}{3}$£¬¢Ù£¬
ÓÖÔ²E¹ýµãF£¬ËùÒÔ£¨-$\sqrt{3}$-t£©2=£¨m-t£©2+n2£¬¢Ú£¬
µãP1ÔÚÍÖÔ²ÉÏ£¬¡àn2=1-$\frac{{m}^{2}}{4}$£¬¢Û£¬
ÓÉ¢Ù¢Ú¢Û½âµÃ£ºt=-$\frac{\sqrt{3}}{2}$»òt=-$\sqrt{3}$£¬
ÓÖt=-$\sqrt{3}$ʱ£¬m=-$\frac{4\sqrt{3}}{3}$£¼-2£¬²»ºÏÌâÒ⣬
×ÛÉÏ£ºÔ²ÐÄE£¨-$\frac{\sqrt{3}}{2}$£¬0£©£¬m=-$\frac{2\sqrt{3}}{3}$£¬n2=$\frac{2}{3}$£¬
¼´ÓÐÔ²EµÄ·½³ÌΪ£¨x+$\frac{\sqrt{3}}{2}$£©2+y2=$\frac{3}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÄÔËÓã¬Í¬Ê±¿¼²éÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓöԳÆÐÔÊǽâÌâµÄ¹Ø¼ü£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©£¬ÆäÖÐa£¬b£¬c¡Ê{-3£¬-2£¬-1£¬0£¬1£¬2£¬3}£¬ÔÚÕâЩÅ×ÎïÏßÖÐaÓëbͬºÅ£¬¼ÇËæ»ú±äÁ¿¦Î=¡°|a-b|µÄȡֵ¡±£¬Çó¦ÎµÄÊýѧÆÚÍûE£¨¦Î£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ËÄÀâÖùABCD-A1B1C1D1ÖУ¬AA1¡ÍÃæABCD£¬ËıßÐÎABCDΪÌÝÐΣ¬AD¡ÎBC£¬ÇÒAD=3BC£®¹ýA¡¢C¡¢DÈýµãµÄÆ½Ãæ¼ÇΪa£¬BB1ÓëaµÄ½»µãΪQ£®ÔòÒÔÏÂËĸö½áÂÛ£º¢ÙQC¡ÎA1D£»¢ÚB1Q=2QB£»¢ÛÖ±ÏßA1BÓëÖ±ÏßCDÏཻ£»¢ÜËÄÀâÖù±»Æ½Ãæa·Ö³ÉµÄÉÏÏÂÁ½²¿·ÖÌå»ýÏàµÈ£®ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÁâÐÎABCDµÄ±ß³¤Îª2£¬¡ÏBAD=60¡ã£¬ÏÖÑØBD½«¡÷ABDÕÛÆð²¢Ê¹µÃAC=$\sqrt{3}$£¨ÈçͼËùʾ£©£¬Ôò¶þÃæ½ÇA-BD-CµÄ´óСΪ£¨¡¡¡¡£©
A£®30¡ãB£®60¡ãC£®90¡ãD£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AD´¹Ö±ÓÚABºÍCD£¬²àÀâSD¡Íµ×ÃæABCD£¬ÇÒSD=AD=AB=2CD£¬µãEΪÀâSDµÄÖе㣮
£¨1£©ÇóÒìÃæÖ±ÏßAEºÍSBËù³É½ÇµÄÓàÏÒÖµ£»
£¨2£©ÇóÖ±ÏßAEºÍÆ½ÃæSBCËù³É½ÇµÄÕýÏÒÖµ£»
£¨3£©ÇóÃæSADºÍÃæSBCËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}{x^2}$-alnx£¨a£¾0£©£®
£¨¢ñ£©Èôa=2£¬Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èô?x£¾0£¬²»µÈʽf£¨x£©-a¡Ý0ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¸ù¾ÝÐÂÐÞ¶©µÄ¡°»·¾³¿ÕÆøÖÊÁ¿±ê×¼¡±Ö¸³ö¿ÕÆøÖÊÁ¿Ö¸ÊýÔÚ0-50£¬¸÷ÀàÈËȺ¿ÉÕý³£»î¶¯£®Ä³Êл·±£¾ÖÔÚ2014Äê¶Ô¸ÃÊнøÐÐΪÆÚÒ»ÄêµÄ¿ÕÆøÖÊÁ¿¼à²â£¬µÃµ½Ã¿ÌìµÄ¿ÕÆøÖÊÁ¿Ö¸Êý£®´ÓÖÐËæ»ú³éÈ¡50¸ö×÷ΪÑù±¾½øÐзÖÎö±¨¸æ£¬Ñù±¾Êý¾Ý·Ö×éÇø¼äΪ[0£¬10£©£¬[10£¬20£©£¬[20£¬30£©£¬[30£¬40£©£¬[40£¬50£©£¬[40£¬50£©£¬Óɴ˵õ½Ñù±¾µÄ¿ÕÆøÖÊÁ¿Ö¸ÊýƵÂÊ·Ö²¼Ö±·½Í¼£¬Èçͼ£¬
£¨1£©ÇóaµÄÖµ
£¨2£©¸ù¾ÝÑù±¾Êý¾Ý£¬ÊÔ¹À¼ÆÕâÒ»Äê¶ÈµÄ¿ÕÆøÖÊÁ¿Ö¸ÊýµÄƽ¾ùÖµ
£¨3£©ÓÃ×Å50¸öÑù±¾Êý¾ÝÀ´¹À¼ÆÈ«ÄêµÄ×ÜÌåÊý¾Ý£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬Èç¹û¿ÕÆøÖÊÁ¿Ö¸Êý²»³¬¹ý20£¬¾ÍÈ϶¨¿ÕÆøÖÊÁ¿Îª¡°×îÓŵȼ¶¡±£¬´ÓÕâÒ»ÄêµÄ¼à²âÊý¾ÝÖÐËæ»ú³éÈ¡2ÌìµÄÊýÖµ£¬ÆäÖдﵽ¡°×îÓŵȼ¶¡®µÄÌìÊýΪ¦Æ£¬Ç󦯵ķֲ¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ã¿ÌìµÄPÖµÊÇ¿ÕÆøÖÊÁ¿µÄÖØÒªÖ¸±ê£¬¿ÕÆøÖÊÁ¿¼¶±ðÓëPÖµ·¶Î§¶ÔÓ¦¹ØÏµÈç±íËùʾ£¬ÎªÁËÁ˽âijÊÐ2014ÄêµÄ¿ÕÆøÖÊÁ¿£¬Ëæ»ú³éÈ¡Á˸ÃÊÐ2014Äê10ÌìµÄPÖµÊý¾Ý£¬»æÖƳɾ¥Ò¶Í¼ÈçͼËùʾ£®
£¨1£©ÊÔ¹À¼Æ¸ÃÊÐ2014ÄêPÖµµÄÈÕÆ½¾ùÖµ£»
£¨2£©°ÑƵÂÊÊÓ×÷¸ÅÂÊ£¬Çó¸ÃÊеĺóÐø3Ììʱ¼äÀïÖÁÉÙÓÐ1Ìì¿ÕÆøÖÊÁ¿³¬±êµÄ¸ÅÂÊ£»
£¨3£©´ÓÕâ10ÌìµÄPÖµÊý¾ÝÖÐÈÎÈ¡3ÌìµÄÊý¾Ý£¬½«ÆäÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊý¼ÇΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
PM2.5ÈÕ¾ùÖµ£¨Î¢¿Ë/Á¢·½Ã×£©·¶Î§¿ÕÆøÖÊÁ¿¼¶±ð
£¨1£¬35]1¼¶
£¨35£¬75]2¼¶
´óÓÚ75³¬±ê

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®²»µÈʽ-4¡Üx2-3x£¼18µÄÕûÊý½âΪ-2£¬-1£¬0£¬1£¬2£¬3£¬4£¬5£®£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸