精英家教网 > 高中数学 > 题目详情
1.设i是虚数单位,则复数(-i)2+$\frac{5}{2+i}$=(  )
A.2-2iB.1-iC.3-iD.11-5i

分析 直接利用虚数单位i的运算性质及复数代数形式的乘除运算化简得答案.

解答 解:(-i)2+$\frac{5}{2+i}$=$-1+\frac{5(2-i)}{(2+i)(2-i)}=-1+\frac{5(2-i)}{5}=-1+2-i=1-i$.
故选:B.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.一组数据a,1,b,3,2的平均数是1,方差为2,则a2+b2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数$\frac{z}{1-2i}$的共轭复数的虚部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}的公比为q,前n项和为Sn,已知S10=20,S15=30,则$\frac{1-q}{{a}_{1}}$Sn的最大值为$1+\frac{\root{5}{16}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)是减函数,且函数y=f(x)的图象关于原点中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),其中t=k•s.则当2<s<4时,k的取值范围是(  )
A.[-$\frac{1}{2}$,1]B.(-∞,0)∪[1,+∞)C.(-$\frac{1}{2}$,1]D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$-$\frac{1}{5}$$\overrightarrow{b}$=(-2,1),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为$\sqrt{205}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为正实数,则函数f(x)=a+sin$\frac{x}{a}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b-a)•cosC=c•cosA.
(Ⅰ)求角C的大小;
(Ⅱ)设y=-4$\sqrt{3}$sin2$\frac{A}{2}$+2sin(C-B),求y的最大值并判断当y取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙、丙等5人站成一排,则甲、乙均不与丙相邻的概率$\frac{3}{10}$.

查看答案和解析>>

同步练习册答案