精英家教网 > 高中数学 > 题目详情
若数列{an}满足点(
1
an
1
an+1
)(n∈N*)在函数f(x)=x+2n的图象上,且a1=4.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)求证:
4
3
a1a2
+
a2a3
+…+
anan+1
<2.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由题意得
1
an+1
-
1
an
=2n,利用累加法求得通项公式;
(Ⅱ)由(Ⅰ)得
anan+1
=
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
),利用裂项法求和,放缩即得结论.
解答: 解:(Ⅰ)由题意得
1
an+1
=
1
an
+2n,
1
an+1
-
1
an
=2n,
1
an
-
1
an-1
=2(n-1),…
1
a3
-
1
a2
=2×2,
1
a2
-
1
a1
=2×1,
∴累加得
1
an
-
1
a1
=n2-n,即
1
an
=
1
a1
+n2-n,又a1=4,
∴an=
4
(2n-1)2

(Ⅱ)由(Ⅰ)得
anan+1
=
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
),
a1a2
+
a2a3
+…+
anan+1
=2(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=2(1-
1
2n+1
)=
4n
2n+1
4n
2n
=2
4n
2n+1
4n
2n+n
=
4
3

4
3
a1a2
+
a2a3
+…+
anan+1
<2.
点评:本题主要考查数列通项公式的求法累加法及数列求和的裂项法,考查学生的运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z满足(3-4i)z=25,则z=(  )
A、-3-4iB、-3+4i
C、3-4iD、3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某农户准备建一个水平放置的直四棱柱形储水窖(如图),其中直四棱柱的高AA1=10m,两底面ABCD,A1B1C1D1是高为2m,面积为10m2的等腰梯形,且∠ADC=θ(0<θ<
π
2
).若储水窖顶盖每平方米的造价为100元,侧面每平方米的造价为400元,底部每平方米的造价为500元.
(1)试将储水窖的造价y表示为θ的函数;
(2)该农户如何设计储水窖,才能使得储水窖的造价最低,最低造价是多少元(取
3
=1.73).

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,…,n这n个数中取m(m,n∈N*,3≤m≤n)个数组成递增等差数列,所有可能的递增等差数列的个数记为f(n,m).
(1)当n=6,m=3时,写出所有可能的递增等差数列及f(6,3)的值;
(2)求证:f(n,m)>
(n-m)(n+1)
2(m-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

己知斜三棱柱ABC-A1B1C1的底面是边长为2的正三角形,侧面A1ACC1为菱形,∠A1AC=60°,平面A1ACC1⊥平面ABC,M、N是AB,CC1的中点.
(I)求证:CM∥平面A1BN.
(Ⅱ)求证:A1C⊥BN.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C1和C2的方程分别为
x2
4
+y2=1和
y2
16
+
x2
4
=1,射线OA与C1和C2分别交于点A和点B,且
OB
=2
OA
,则射线OA的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,-1≤x0<x1<x2<…<xn≤1,an=|f(xn)-f(xn-1)|,n∈N*,Sn=a1+a2+a3+…+an,则Sn的最大值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数
-2i
1+i
的虚部为(  )
A、2B、-1C、1D、-2

查看答案和解析>>

同步练习册答案