已知椭圆C:
=1(a>b>0)的离心率为
,F为椭圆的右焦点,M、N两点在椭圆C上,且
(λ>0),定点A(-4,0).
(1) 求证:当λ=1时,![]()
;
(2) 若当λ=1时,有
=
,求椭圆C的方程.
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1) 求点B的轨迹方程;
(2) 当点D位于y轴的正半轴上时,求直线PQ的方程;
(3) 若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x 相切的圆,
(1) 求定点N的坐标;
(2) 是否存在一条直线l同时满足下列条件:
① l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
② l被圆N截得的弦长为2.
查看答案和解析>>
科目:高中数学 来源: 题型:
设F1、F2分别是椭圆
=1(a>b>0)的左、右焦点,若在直线x=
上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.
(1) 若∠F1AB=90°,求椭圆的离心率;
(2) 若
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆的右焦点F
,左、右准线分别为l1:x=-m-1,l2:x=m+1,且l1、l2分别与直线y=x相交于A、B两点.
(1) 若离心率为
,求椭圆的方程;
(2) 当
<7时,求椭圆离心率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com