精英家教网 > 高中数学 > 题目详情
3.已知数列{αn}的通项公式为${α_n}=\frac{5-2n}{16}π,n∈{N^*}$,数列{βn}的前n项和为${S_n}=\frac{n^2}{16}π,n∈{N^*}$.
(1)求数列{βn}的通项公式;
(2)求证:数列{tanαn•tanβn+tanαn+tanβn}是常数数列;
(3)求数列{tanαn•tanβn}的前8n项和.

分析 (1)数列{βn}的前n项和为${S_n}=\frac{n^2}{16}π,n∈{N^*}$.当n≥2时,βn=Sn-Sn-1=$\frac{2n-1}{16}π$.又β1=S1=$\frac{π}{16}$,满足上式.βn=$\frac{2n-1}{16}π$.
(2)由${α_n}+{β_n}=\frac{π}{4}$,可得$tan({α_n}+{β_n})=\frac{{tan{α_n}+tan{β_n}}}{{1-tan{α_n}•tan{β_n}}}=1$,化简整理即可得出.
(3)利用诱导公式化简整理即可得出.

解答 (1)数列{βn}的前n项和为${S_n}=\frac{n^2}{16}π,n∈{N^*}$.
当n≥2时,βn=Sn-Sn-1=$\frac{2n-1}{16}π$.又β1=S1=$\frac{π}{16}$,满足上式.
∴βn=$\frac{2n-1}{16}π$.
(2)∵${α_n}+{β_n}=\frac{π}{4}$…(4分)
∴$tan({α_n}+{β_n})=\frac{{tan{α_n}+tan{β_n}}}{{1-tan{α_n}•tan{β_n}}}=1$,
∴tanαn•tanβn+tanαn+tanβn=1,
∴{tanαn•tanβn+tanαn+tanβn}是常数数列.        …(6分)
(3)∵tanα1+tanα2+tanα3+tanα4+tanα5+tanα6+tanα7+tanα8=$tan\frac{3}{16}π+tan\frac{1}{16}π+tan\frac{-1}{16}π+tan\frac{-3}{16}π+tan\frac{-5}{16}π+tan\frac{-7}{16}π+tan\frac{-9}{16}π+tan\frac{-11}{16}π=0$$\begin{array}{l}∴T=8\\∴tan{α_{8n-7}}+tan{α_{8n-6}}+tan{α_{8n-5}}+tan{α_{8n-4}}+tan{α_{8n-3}}+tan{α_{8n-2}}+tan{α_{8n-1}}+tan{α_{8n}}=0\end{array}$…(9分)
∵tanβ1+tanβ2+tanβ3+tanβ4+tanβ5+tanβ6+tanβ7+tanβ8=$tan\frac{1}{16}π+tan\frac{3}{16}π+tan\frac{5}{16}π+tan\frac{7}{16}π+tan\frac{9}{16}π+tan\frac{11}{16}π+tan\frac{13}{16}π+tan\frac{15}{16}π=0$$\begin{array}{l}∵T=8\\∴tan{β_{8n-7}}+tan{β_{8n-6}}+tan{β_{8n-5}}+tan{β_{8n-4}}+tan{β_{8n-3}}+tan{β_{8n-2}}+tan{β_{8n-1}}+tan{β_{8n}}=0\end{array}$$\begin{array}{l}∴(tan{α_1}+tan{α_2}+tan{α_3}+tan{α_4}+tan{α_5}+tan{α_6}+tan{α_7}+tan{α_8})+…\\+(tan{α_{8n-7}}+tan{α_{8n-6}}+tan{α_{8n-5}}+tan{α_{8n-4}}+tan{α_{8n-3}}+tan{α_{8n-2}}+tan{α_{8n-1}}+tan{α_{8n}})\\+(tan{β_1}+tan{β_2}+tan{β_3}+tan{β_4}+tan{β_5}+tan{β_6}+tan{β_7}+tan{β_8})+…\\+tan{β_{8n-7}}+tan{β_{8n-6}}+tan{β_{8n-5}}+tan{β_{8n-4}}+tan{β_{8n-3}}+tan{β_{8n-2}}+tan{β_{8n-1}}+tan{β_{8n}}=0\end{array}$
∵tanαn•tanβn+tanαn+tanβn=1,
∴Tn=8n…(12分)

点评 本题考查了诱导公式、递推关系、正切和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若一个圆锥的底面半径是母线长的一半,侧面积和它的体积的数值相等,则该圆锥的底面半径为(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:关于x的函数y=(a-1)x为增函数;命题q:不等式-x2+2x-2≤a对一切实数均成立.
(1)若命题q为真命题,求实数a的取值范围;
(2)命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ y≥3x-6\end{array}\right.$,则目标函数$z={({\frac{1}{2}})^{2x+y}}$的最大值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是(  )
A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2
C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某种产品广告的支出x与销售收入y(单位:万元)之间有下列所示的对应数据及统计数据.
广告支出x/万元1234
销售收入y/万元12284256
$\overline{x}$$\overline{y}$$\sum_{i=1}^{4}$($\overline{x}$i-$\overline{x}$)2$\sum_{i=1}^{4}$($\overline{x}$i-$\overline{x}$)(yi-$\overline{y}$)
$\frac{5}{2}$$\frac{69}{2}$573
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
(1)画出表中数据的散点图;
(2)求出y与x的回归直线方程;
(3)若广告费为9万元,则销售收入约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是我校100名高三学生第6次月考考试数学成绩的频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值和这100名学生数学成绩的平均数;
(2)若这100名学生数学成绩某些分数段的人数(x)与地理成绩相应分数段的人数(y)之比如表所示,求地理成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4(a•2x-$\frac{4}{3}$a)(a<100),若函数f(x)与g(x)的图象只有一个公共点,求整数a的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a>0,b>0,下列命题一定正确的是(  )
A.若3a+2a=3b+3b,则a<bB.若3a+2a=3b+3b,则a>b
C.若3a-2a=3b-3b,则a<bD.若3a-2a=3b-3b,则a>b

查看答案和解析>>

同步练习册答案