| A. | (-∞,1)∪(3+∞) | B. | (-∞,-1)∪(0,1) | C. | (-∞,0)∪(0,3) | D. | (-∞,1)∪(2,3) |
分析 由题意,可先研究出奇函数y=f(x) (x≠0)的图象的情况,解出其函数值为负的自变量的取值范围来,再解f(x-2)<0得到答案
解答 解:由题意x∈(-∞,0)时,f(x)=x+1,可得x>-1时,函数值为正,-1<x<0时,函数值为负;
又奇函数y=f(x)(x≠0),由奇函数的性质知,当0<x<1时,函数值为负,当x>1时函数值为正.
综上,当x<-1或0<x<1时,函数值为负
∵f(x-2)<0
∴x-2<-1或0<x-2<1,即x<1,或2<x<3
故选:D.
点评 本题考查利用奇函数图象的对称性解不等式,解题的关键是先研究奇函数y=f(x)函数值为负的自变量的取值范围,再解f(x-1)<0的x的取值范围,函数的奇函数的对称性是高考的热点,属于必考内容.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{\sqrt{5}}}{5},1})$ | B. | $[{\frac{{\sqrt{2}}}{2},1})$ | C. | $({0,\frac{{\sqrt{5}}}{5}}]$ | D. | $({0,\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com