精英家教网 > 高中数学 > 题目详情
6.在△ABC中,内角A,B,C的对边分别为a,b,c,且sin2B+sin2C+sinBsinC-sin2A=0,则$\frac{asin(30°-C)}{b-c}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由条件利用正弦定理可得 b2+c2-a2=-bc,再由余弦定理可得cosA=-$\frac{1}{2}$,可得A=120°,利用三角函数恒等变换的应用化简所求即可得解.

解答 解:在△ABC中,由sin2B+sin2C-sin2A+sinBsinC=0,
利用正弦定理可得  b2+c2-a2=-bc,再由余弦定理可得 cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∴A=120°,B+C=60°
∴$\frac{asin(30°-C)}{b-c}$=$\frac{sinAsin(30°-C)}{sin(60°-C)-sinC}$=$\frac{\frac{\sqrt{3}}{2}sin(30°-C)}{\sqrt{3}sin(30°-C)}$=$\frac{1}{2}$.
故选:A.

点评 本题主要考查正弦定理和余弦定理在解三角形中的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为${S_n}={2^n}+a$(a为常数,n∈N*).
(1)求a1,a2,a3
(2)若数列{an}为等比数列,求常数a的值及an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an}是等比数列,数列满足a1=3,a4=24,数列{bn}满足b1=1,b4=-8,且{an+bn} 是等差数列.
(I )求数列{an}和{bn}的通项公式;
(II)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.观察下列三角形数表,数表(1)是杨辉三角数表,数表(2)是与数表(1)有相同构成规律(除每行首末两端的数外)的一个数表

对于数表(2),设第n行第二个数为an(n∈N*)(如a1=2,a2=4,a3=7)
(I )归纳出an与an-1(n≥2,n∈N*)的递推公式(不用证明),并由归纳的递推公式,求出{an}的通项公式an
(Ⅱ)数列{bn}满足:(an-1)•bn=1,求证:b1+b1+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=2ex-ax2+(a-2e)x有三个不同的零点,则实数a的取值范围是(  )
A.(e,+∞)B.(0,e)C.[1,e)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若A${\;}_{m}^{5}$=2A${\;}_{m}^{3}$,则m的值为(  )
A.5B.3C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={y|y=$\sqrt{x-2}$},B={x|y=$\sqrt{x-2}$},则A∩CRB=(  )
A.{x|x≥0}B.{x|0≤x<2}C.{x|x<2}D.{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(3,-2)且与曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)有相同焦点的椭圆方程是$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[-1,2]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案