精英家教网 > 高中数学 > 题目详情
16.求过曲线y=ex上点P(1,e)且与曲线在该点处的切线垂直的直线方程.

分析 求得函数的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为-1,可得所求直线的斜率,由点斜式方程即可得到所求直线方程.

解答 解:y=ex的导数为y′=ex
可得曲线在P(1,e)处的切线斜率为e,
即有与曲线在该点处的切线垂直的直线斜率为-$\frac{1}{e}$,
则所求直线的方程为y-e=-$\frac{1}{e}$(x-1),
即为x+ey-e2-1=0.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,同时考查两直线垂直的条件:斜率之积为-1,直线方程的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知直线a,b和平面α,如果a?α,b?α,且a∥b,求证a∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α的终边上一点P与点A(-3,2)关于y轴对称,角β的终边上一点Q与点A关于原点对称,那么sinα+sinβ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不解三角形,判断下列三角形解的个数.
(1)a=5,b=4,A=120°;
(2)a=9,b=10,A=60°;
(3)c=50,b=72,C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一火炮炮筒与地面成60°角,炮弹射离炮膛时的速度为240m/s,求炮弹所能达到的最大高度与最远水平距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方形AG1G2G3中,点B,C分别是G1G2,G2G3的中点,点E,F分别是G3C,AC的中点,现在沿AB,BC及AC把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后记为G.
(I)判断在四面体GABC的四个面中,哪些面的三角形是直角三角形,若是直角三角形,写出其直角(只需写出结论);
(Ⅱ)请在四面体GABC的直观图中标出点E,F,并求证:EF∥平面ABG;
(Ⅲ)求证:平面EFB⊥平面GBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长为3cm的等边三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆x2+y2-2x+4y+1=0的半径为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果在一次实验中,测得数对(x,y)的四组数值分别是A(1,2),B(2,3),C(3,6),D(4,7),则y与x之间的回归直线方程是(  )
A.$\widehat{y}$=x+1.9B.$\widehat{y}$=1.8xC.$\widehat{y}$=0.95x+1.04D.$\widehat{y}$=1.05x-0.9

查看答案和解析>>

同步练习册答案