精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)对于任意,不等式恒成立,求实数的最大值.

【答案】见解析

【解析】(1)当时,,其定义域为

…………………1分

时,成立

成立,为增函数…………………2分

时,),

时,增函数,时,减函数,时,函数,…………………4分

上,当时,为增函数;当时,为增函数,为减函数…………………5分

(2)不等式等价于

等价于…………………6分

…………………7分

再令 ,则

上为减函数于是…………………9分

从而于是上为函数所以…………………10分

故要使恒成立只要…………………11分

综上,的最值为…………………12分

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

【命题意图】本题主要考查利用导数研究函数的单调性、不等式恒成立等基础知识,意在考查逻辑推理能

力、等价转化能力、运算求解能力,以及考查函数与方程思想、分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且BRA),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)= 的定义域为[﹣a﹣2,b]
(1)求实数a,b的值;
(2)判断函数f(x)的单调性,并用定义给出证明;
(3)若实数m满足f(m﹣1)<f(1﹣2m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点

(1)当时,若是椭圆第一象限内的一点,,求点的坐标;

(2)当椭圆焦点在轴上且焦距2时,若直线与椭圆相交于两点,且证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,设分别为左顶点、上顶点、下顶点,且下顶点到直线的距离为

(1)求椭圆的方程;

(2)如图所示,过点作斜率为的直线交椭圆于,交轴于点,若中点,过作与直线垂直的直线,证明:对于任意的直线恒过定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= ﹣(x+1)0的定义域为(
A.(﹣1, ]
B.(﹣1, )??
C.(﹣∞,﹣1)∪(﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x),当x∈(﹣∞,0]时的解析式为f(x)=x2+2x
(1)求函数f(x)在R上的解析式;
(2)画出函数f(x)的图象并直接写出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆 轴的正半轴交于点,以为圆心的圆 )与圆交于 两点.

(1)若直线与圆切于第一象限,且与坐标轴交于 ,当直线长最小时,求直线的方程;

(2)设是圆上异于 的任意一点,直线分别与轴交于点,问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求的定义域及其零点;

(2)讨论并用函数单调性定义证明函数在定义域上的单调性;

(3)设,当时,若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案