精英家教网 > 高中数学 > 题目详情
已知f(x+
1
x
)=x2+
1
x2
,求f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:利用拼凑法就可求出复合函数解析式.
解答: 解;∵f(x+
1
x
)=x2+
1
x2
=(x+
1
x
2-2,
令t=x+
1
x
,当x>0时,t≥2
x•
1
x
=2,当且仅当x=1时取等号,
当x<0时,t=-(-x-
1
x
)≤-2,当且仅当x=-1时取等号,
∴f(t)=t2-2,t∈(-∞,-2]∪[2,+∞)
∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞)
点评:本题考查的知识点是函数解析式的求解及其常用方法,其中本题使用的凑配法,是已知复合函数解析式及内函数的解析,求外函数解析式时常用的方法,请熟练掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明:如果a>b>0,则
a
b
.其中假设的内容应是(  )
A、
a
=
b
B、
a
b
C、
a
=
b
a
b
D、
a
=
b
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
2
2
,且曲线上的一动点P到右焦点的最短距离为
2
-1.
(1)求椭圆C的方程;
(2)过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1,
(1)求过点P(
1
2
1
2
)且被P平分的弦所在直线的方程;
(2)过A(2,1)引椭圆的割线,求截得的弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,其右焦点为F(1,0),长轴长为4.
(1)求椭圆C的方程;
(2)斜率为1的直线l经过点F,交椭圆C于M,N两点,P为椭圆位于第四象限上一点,且OP⊥MN,求四边形OMPN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角A,B为锐角,且满足:sin2(A+B)=sin2A+sin2B.
(Ⅰ)求sinA+sinB的取值范围;
(Ⅱ)以A,B为内角构造△ABC,角A,B,C所对的边为a,b,c,若c=2,求
a2+2b2
a2b2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD是正方形,若PA⊥平面ABCD,且PA=BC=2.求:
(1)求二面角A-CD-P的大小;
(2)VP-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右两个焦点,O为坐标原点,点P(-1,
2
2
)在椭圆上,线段PF2与y轴的交点M满足:点M是线段PF2的中点;直线l:y=kx+m与以F1F2为直径的圆O相切,并与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;
(2)设
OA
OB
=λ,求证:λ=
k2+1
2k2+1

(3)当(2)中的λ满足
2
3
≤λ≤
3
4
时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={y|y=-(x+2)(x-4)},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案