精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx(0≤x≤$\frac{π}{2}$)的值域为[$\frac{1}{2}$,1].

分析 利用两角和的正弦公式化简函数y=sin(x+$\frac{π}{3}$),由于0≤x≤$\frac{π}{2}$,可得$\frac{π}{3}$≤x+$\frac{π}{3}$≤$\frac{5π}{6}$,利用正弦函数的定义域和值域即可得解.

解答 解:∵y=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx=sin(x+$\frac{π}{3}$),
∵0≤x≤$\frac{π}{2}$,
∴可得:$\frac{π}{3}$≤x+$\frac{π}{3}$≤$\frac{5π}{6}$,
∴y=sin(x+$\frac{π}{3}$)∈[$\frac{1}{2}$,1].
故答案为:[$\frac{1}{2}$,1].

点评 本题主要考查两角和的正弦公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.半径为3的球的表面积为(  )
A.B.C.12πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c.已知:b是a,c的等差中项且A-C=$\frac{π}{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=ln(mx2+4mx+4)的值域为R,则m的取值范围是(  )
A.m<0或m≥1B.m≥1C.m>1D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正三棱柱ABC-A1B1C1中,它们的所有棱长都相等,那么CB1与平面AA1B1B所成角的正切值(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{15}}{3}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若角α是三角形的内角,角α的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么角α=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,三个式子$\overrightarrow{AB}$$•\overrightarrow{AC}$≤0,$\overrightarrow{BA}$$•\overrightarrow{BC}$≤0,$\overrightarrow{CA}$$•\overrightarrow{CB}$≤0中(  )
A.至少有一个成立B.至多有一个成立C.都不成立D.可以同时成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{lo{g}_{2}x-1}$的定义域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式-x2+3x-2≥0的解集是(  )
A.{x|x>2或x<1}B.{x|x≥2或x≤1}C.{x|1≤x≤2}D.{x|1<x<2}

查看答案和解析>>

同步练习册答案