精英家教网 > 高中数学 > 题目详情
已知函数y=log2(x2-ax+a)的值域为R,求a的取值范围.
考点:对数函数的值域与最值
专题:计算题,函数的性质及应用
分析:令f(x)=x2-2ax+a,由题意函数的值域为R,则可得f(x)可以取所有的正数可得,△=4a2-4a≥0,解不等式可求.
解答: 解:令f(x)=x2-2ax+a
由题意函数的值域为R,则可得f(x)可以取所有的正数
∴△=4a2-4a≥0
∴a≥1或a≤0.
点评:本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个顶点为A(a,0)、B(0,b),右焦点为F,且F到直线AB的距离等于F到原点的距离,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+4y2=4,斜率为1的直线l交椭圆于A、B两点.
(1)求弦AB长的最大值;
(2)求ABO面积的最大值及此时直线l的方程(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}{bn}中,a 1=1,b1=2,且an+1+(-1)nan=bn,n∈N*,设数列{an}{bn}的前n项和分别为An和Bn
(1)若数列{an}是等差数列,求An和Bn
(2)若数列{bn}是公比q(q≠1)为等比数列:
    ①求A2013
    ②是否存在实数m,使A4n=m•a4n对任意自然数n∈N*都成立,若存在,求m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知a1=2,an+1=
n+1
2n
an
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数:z=
2i
1+i
,则z的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(-3
3
8
)-
2
3
+(
2
-
3
)0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1•a9=256,a4+a6=40,则公比q为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则
5i
1-2i
=(  )
A、2+iB、-2+i
C、2-iD、-2-i

查看答案和解析>>

同步练习册答案