精英家教网 > 高中数学 > 题目详情
6.角α始边与x轴非负半轴重合,终边经过点P(-2,1),则tanα=-$\frac{1}{2}$.

分析 直接利用正切函数的定义,即可得出结论.

解答 解:∵角α始边与x轴非负半轴重合,终边经过点P(-2,1),
∴tanα=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查任意角的三角函数的定义,掌握三角函数的定义是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设an是函数fn(x)=xn+nx-1的零点,n∈N+,x∈(0,+∞).
(Ⅰ)求证:an∈(0,1),且an+1<an
(Ⅱ)求证:a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+…+a${\;}_{n}^{2}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在区域D:$\left\{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}\right.$内任取一点P(x,y),该点满足不等式y≤x2的概率为a,则二项式($\frac{x}{a}$-$\frac{1}{\sqrt{x}}$)5的展开式中x2的系数为270.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在平行四边形ABCD中,∠BAD=120°,AB=2,AD=1,若$\overrightarrow{DE}=t\overrightarrow{DC}$,AE⊥BD,则实数t的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(3)=0,则使得$f({log_{\frac{1}{3}}}x)<0$的x的范围为(  )
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.$(-∞,\frac{1}{27})∪(27,+∞)$D.$(\frac{1}{27},27)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,O为直线A1A2015外一点,若A1,A2,A3,A4,A5…A2015中任意相邻两点的距离相等,设${\overrightarrow{OA}}_{1}=\overrightarrow{a}$,$\overrightarrow{O{A}_{2015}}$=$\overrightarrow{b}$,用$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{O{A}_{1}}+\overrightarrow{O{A}_{2}}+…+\overrightarrow{O{A}_{2015}}$,其结果为(  )
A.2014($\overrightarrow{a}+\overrightarrow{b}$)B.2015($\overrightarrow{a}+\overrightarrow{b}$)C.$\frac{2014}{2}$($\overrightarrow{a}+\overrightarrow{b}$)D.$\frac{2015}{2}$($\overrightarrow{a}+\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出如下四个命题:
①若“p或q”为真命题,则p、q均为真命题;
②命题“若x≥4且y≥2,则x+y≥6”的否命题为“若x<4且y<2,则x+y<6”;
③在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充要条件.
④命题“P”是真命题.
其中正确的命题的个数是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在R上的偶函数,且f(0)=-1,且对任意x∈R,有f(x)=-f(2-x)成立,则f(2015)的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2x+3,g(x)=3x-5,A={y|y=f(g(x))},B={(x,y)|y=g(f(x))},则 A∩B=∅.

查看答案和解析>>

同步练习册答案