分析 (1)由二倍角的正弦公式和正弦定理、余弦定理,解方程可得c,再由三角形的面积公式,计算可得结论;
(2)运用二倍角的正弦公式和正弦定理,2acosA=c,A为锐角,由正弦定理可得c=acosB+bcosA,再由不等式的性质可得cosB<0,可得B为钝角.
解答 解:(1)a=4,sin2A=sinC,
可得2sinAcosA=sinC,
由正弦定理可得2acosA=c,
即有cosA=$\frac{c}{2a}$=$\frac{c}{8}$,
b=5,
由余弦定理可得16=25+c2-10ccosA,
即有c=6,
可得cosA=$\frac{3}{4}$,sinA=$\sqrt{1-\frac{9}{16}}$=$\frac{\sqrt{7}}{4}$,
则△ABC的面积为S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×5×6×$\frac{\sqrt{7}}{4}$=$\frac{15\sqrt{7}}{4}$;
(2)证明:a=4,sin2A=sinC,
可得2sinAcosA=sinC,
由正弦定理可得2acosA=c,A为锐角,
由sinC=sin(A+B)=sinAcosB+cosAsinB,
由正弦定理可得c=acosB+bcosA,
即为8cosA=4cosB+bcosA,
b>8,可得8cosA=4cosB+bcosA>4cosB+8cosA,
可得cosB<0,则B为钝角.
点评 本题考查解三角形的正弦定理和余弦定理、面积公式的运用,考查化简转化思想的运用,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{7}$ | B. | $\frac{18}{7}$ | C. | $\frac{16}{7}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 任意三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{20}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{7}{20}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com