精英家教网 > 高中数学 > 题目详情
5.已知x,y满足不等式$\left\{\begin{array}{l}3x+2y-6≤0\\ 2x-y+2≥0\\ x-y-3≤0\end{array}\right.$,则x+y的最大值是(  )
A.$\frac{20}{7}$B.$\frac{18}{7}$C.$\frac{16}{7}$D.$\frac{2}{7}$

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z=x+y的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{3x+2y-6=0}\\{2x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{7}}\\{y=\frac{18}{7}}\end{array}\right.$,即A($\frac{2}{7}$,$\frac{18}{7}$),
代入目标函数z=x+y得z=$\frac{2}{7}$+$\frac{18}{7}$=$\frac{20}{7}$.
即目标函数z=x+y的最大值为$\frac{20}{7}$
故选:A

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-4ax+2+3b(a>0),若f(x)在区间[3,4]上有最大值5,最小值-4,
(1)求a,b的值
(2)若g(x)=f(x)+(m+1)x在[3,5]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=log2x•log22x取得最小值时x的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$.在以坐标原点为极点,x轴正半轴为极轴建立的极坐标系中,点A的坐标为($\frac{\sqrt{2}}{2}$,$\frac{3}{4}$π).
(1)将点A的坐标化为直角坐标系下的坐标,椭圆的参数方程化为普通方程;
(2)直线l与椭圆C交于P、Q两点,求|AP|•|AQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α∈(0,π),sin(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tanα=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=($\frac{1}{2}$x+a)(x-$\sqrt{3}$)为偶函数,则f(3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为(  )
A.$\frac{1}{2}$B.$\frac{5}{16}$C.$\frac{7}{16}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间中,给出下列四个命题:
①平行于同一直线的两条直线平行;   ②平行于同一平面的两条直线平行;
③垂直于同一直线的两条直线平行;   ④垂直于同一平面的两个平面平行.
其中正确命题的序号(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=4,sin2A=sinC.
(1)若b=5,求△ABC的面积;
(2)若b>8,证明:角B为钝角.

查看答案和解析>>

同步练习册答案