分析 (1)由题意可得|x-1|+|x+1|≥3,讨论当x≤-1时,当-1<x<1时,当x≥1时,去掉绝对值解不等式,最后求并集;
(2)由题意可得2>f(x)min,运用绝对值不等式的性质,可得f(x)的最小值,再由绝对值不等式的解法,可得a的范围.
解答 解:(1)若a=-1,f(x)≥3,
即为|x-1|+|x+1|≥3,
当x≤-1时,1-x-x-1≥3,即有x≤-$\frac{3}{2}$;
当-1<x<1时,1-x+x+1=2≥3不成立;
当x≥1时,x-1+x+1=2x≥3,解得x≥$\frac{3}{2}$.
综上可得,f(x)≥3的解集为(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞);
(2)?x∈R,使得f(x)<2成立,
即有2>f(x)min,
由函数f(x)=|x-1|+|x-a|≥|x-1-x+a|=|a-1|,
当(x-1)(x-a)≤0时,取得最小值|a-1|,
则|a-1|<2,
即-2<a-1<2,
解得-1<a<3.
则实数a的取值范围为(-1,3).
点评 本题考查绝对值不等式的解法,注意运用分类讨论思想方法,考查存在性问题的解法,注意转化为最值问题,运用绝对值不等式的性质,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -3 | C. | 4 | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{2}}}{6}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -5 | C. | -8 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com