精英家教网 > 高中数学 > 题目详情
2.已知直线l1:ax-y+1=0,l2:x+y+1=0,l1∥l2,则a的值为-1,直线l1与l2间的距离为$\sqrt{2}$.

分析 利用两条直线相互平行的充要条件即可得出.

解答 解:直线l1:ax-y+1=0,l2:x+y+1=0,分别化为:y=ax+1,y=-x-1,
∵l1∥l2,∴a=-1,1≠-1.
两条直线方程可得:x+y-1=0,x+y+1=0.
直线l1与l2间的距离d=$\frac{|-1-1|}{\sqrt{2}}$=$\sqrt{2}$.
故答案分别为:-1;$\sqrt{2}$.

点评 本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.不等式f(x)=4x-2x+2>0的解集为(2,+∞);f(x)的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=3,an=2an-1+(n-2)(n≥2,n∈N*)
(1)求证:数列{an+n}是等比数列,并求{an}的通项公式;
(2)求数列{an}的与前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,若$λ\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$与2$\overrightarrow{{e}_{1}}$+3$λ\overrightarrow{{e}_{2}}$共线,则实数λ的值是$±\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列等式:①arcsin$\frac{π}{2}$=1;②arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$;③arcsinsin$\frac{π}{3}$=$\frac{π}{3}$;④sin(arcsin$\frac{1}{2}$)=$\frac{1}{2}$.其中正确等式的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,CB=CD=2.面EAD⊥面ABCD,面FCB⊥面ABCD,且CF⊥BC.
(1)证明:BD⊥AE;
(2)若△ADE是正三角形,点P为AF上的点,且PF=2PA,$CF=3\sqrt{3}$,证明:EP∥面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos2x+2$\sqrt{3}$sinxcosx-sin2x,x∈R.
(1)求f(x)的最小正周期和值域;
(2)△ABC中,角A,B,C所对的边分别是a,b,c,若f($\frac{A}{2}$)=2且asinA=bsinC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{m}$=(1,cosθ),$\overrightarrow{n}$=(sinθ,-2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,则sin2θ+6cos2θ的值为(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{bn}满足b1=$\frac{1}{2}$,2bn+1-bn•bn+1=1,则b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{10{0}^{2}}$=(  )
A.$\frac{97}{100}$B.$\frac{99}{100}$C.$\frac{100}{101}$D.$\frac{102}{101}$

查看答案和解析>>

同步练习册答案