精英家教网 > 高中数学 > 题目详情
14.在△ABC中,“sinA-sinB=cosB-cosA”是“A=B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由sinA-sinB=cosB-cosA⇒$sin(A+\frac{π}{4})$=sin$(B+\frac{π}{4})$,可得$A+\frac{π}{4}$=B+$\frac{π}{4}$或$A+\frac{π}{4}$+B+$\frac{π}{4}$=π,即可判断出结论.

解答 解:由sinA-sinB=cosB-cosA⇒$sin(A+\frac{π}{4})$=sin$(B+\frac{π}{4})$,
∴$A+\frac{π}{4}$=B+$\frac{π}{4}$或$A+\frac{π}{4}$+B+$\frac{π}{4}$=π,
可得:A=B或A+B=$\frac{π}{2}$.
∴在△ABC中,“sinA-sinB=cosB-cosA”是“A=B”的必要不充分条件.
故选:B.

点评 本题考查了和差公式、三角函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若曲线y=lnx的一条切线是直线$y=\frac{1}{2}x+b$,则实数b的值为-1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某出版社检验某册书的成本费(单位:元)与印刷数(单位:千册)之间的关系,经统计得到数据(表一)并对其作初步的处理,得到如图所示的散点图及一些统一量的值(表二).
表一
x123571011202530
y9.025.274.063.032.592.282.211.891.801.75
表二 
 $\overline{x}$ $\overline{y}$ $\overline{w}$ $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$)
 11.4 3.39 0.249 934.4 934.4-139.03 6.196
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根据散点图可知更适宜作成本费与印刷册数的回归方程类型,试依据表中数据求出关于的回归方程(结果精确到0.01);
(2)从已有十组数据的前五组数据中任意抽取两组数据,求抽取的两组数据中有一组数据其预测值与实际值之差的绝对值超过0.02的概率.
附:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=$\widehat{α}$+$\widehat{β}$u的斜估计分别为
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中.若公差d=-4,a1+a4+a7+…a25=500,则a6+a9+a12+…+a30=320.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的焦点在y轴上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},则这样的椭圆有(  )
A.12个B.20个C.24个D.35个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=lg(x2-x-2)的定义域为集合A,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程${C}_{28}^{x}$=${C}_{28}^{3x-8}$的解为(  )
A.4 或9B.9C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且a,2b,c成等差数列,则cosB的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2-lnx-a.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对任意x∈(1,+∞),都有$f(x)+\frac{e}{e^x}>\frac{1}{x}$,求实数a的取值范围.

查看答案和解析>>

同步练习册答案