精英家教网 > 高中数学 > 题目详情
函数y=1-sinx,x∈[0,2π]的图象与直线y=
3
2
交点的个数是(  )
A、0B、1C、2D、3
考点:正弦函数的图象
专题:三角函数的求值
分析:根据曲线与方程之间的关系,直接解方程即可得到结论.
解答: 解:由y=1-sinx=
3
2
,得sinx=-
1
2

∴当x∈[0,2π]时,x=
6
或x=
11π
6

即方程有2个解,即两条曲线的图象的交点个数为2个.
故选:C.
点评:本题主要考查函数交点个数的判断,利用函数和方程之间的关系,直接进行求解即可,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3x
,定义an=f(n),bn=log3
1
2
an+1).
(1)求数列{bn}的通项公式;
(2)求满足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)数列{an}前n项和Sn,4Sn=an+1(n∈N*),求a1,a2的值
(2)当{an}是等差数列,公差d,若点(an,bn)在函数f(x)=2x的图象上,(n∈N*),a1=-2,点(a8,4b3)在函数f(x)的图象上,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(ax+a-x)(a>0,a≠1).
(1)证明f(x)为奇函数;
(2)若f(x)的图象经过点(1,
5
2
),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+α)cosx为奇函数,则a=
 
;现将函数f(x)的图象沿x轴向左平移
π
2
个单位,得到的图象所对应的函数记为g(x),那么其解析式g(x)=
 
;且函数g(x)图象的对称中心为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD中,AD=BC.AD∥BC,且AB=3
2
,AD=2
3
.BD=
6
,沿BD将其折成一个二面角A-BD-C,使得AB⊥CD.
(1)求二面角A-BD-C的大小;
(2)求折后点A到面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是∠A,∠B,∠C对应的三边,a2=b(b+c),求证:∠A=2∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sinxcosx-cos2x+
1
2
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,则f(B)的取值范围(  )
A、(-1,
1
2
]
B、(-
3
2
3
2
]
C、(-
1
2
,1]
D、(-
3
2
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱椎P-ABC中,PA⊥平面ABC,AC=AB=
3
,BC=
6
,∠PBA=
π
3
,点D,E,F分别是PA、PB、PC上的点并且满足PD:PA=PE:PB=PF:PC=1:3
(Ⅰ)求证:AB⊥DF;
(Ⅱ)设平面ABC与平面AEF所成角为θ,求cosθ的值.

查看答案和解析>>

同步练习册答案