分析 由cosα求出sinα的值,由sinβ求出cosβ的值,再利用两角和正弦、余弦公式求sin(α+β)-cos(α+β)的值.
解答 解:cosα=$\frac{4}{5}$,
∴sin2α=1-cos2α=1-${(\frac{4}{5})}^{2}$=$\frac{9}{25}$;
又α∈($\frac{3}{2}$π,2π),
∴sinα=-$\frac{3}{5}$;
又sinβ=-$\frac{3}{5}$,
∴cos2β=1-sin2β=1-${(-\frac{3}{5})}^{2}$=$\frac{16}{25}$;
又β∈(π,$\frac{3}{2}$π),
∴cosβ=-$\frac{4}{5}$,
∴sin(α+β)-cos(α+β)=(sinαcosβ+cosαsinβ)-(cosαcosβ-sinαsinβ)
=(-$\frac{3}{5}$)×(-$\frac{4}{5}$)+$\frac{4}{5}$×(-$\frac{3}{5}$)-$\frac{4}{5}$×(-$\frac{4}{5}$)+(-$\frac{3}{5}$)×(-$\frac{3}{5}$)
=1.
故答案为:1.
点评 本题考查了同角的三角函数关系与两角和的正弦、余弦公式应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{5}$ | B. | $4\sqrt{2}$ | C. | 6 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{1}{2}$π | D. | $\frac{\sqrt{3}}{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com