精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =3 1﹣2 2 =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
(1) 和| + |的值;
(2) 夹角θ的余弦值.

【答案】
(1)解:由已知,向量 =3 1﹣2 2 =4 1+ 2,其中 1=(1,0), 2=(0,1),∴


(2)解:由上得


【解析】(1)先根据 1=(1,0), 2=(0,1)的值表示出向量 ,然后根据向量的数量积运算和向量模的运算求出答案.(2)先求出向量 的模,然后根据 ,将数值代入即可得到答案.
【考点精析】通过灵活运用平面向量的坐标运算和数量积表示两个向量的夹角,掌握坐标运算:设;;设,则;设都是非零向量,的夹角,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,设命题p:椭圆C: + =1的焦点在x轴上;命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.
(1)求直线l的方程;
(2)求直线l关于原点O对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,点M是BC的中点,点N在AC上,且AN=3NC,AM与BN相交于点P,设 = = ,用 表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆C过点A ,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2+bx+c>0的解集为{x|﹣ <x<2},则cx2+bx+a<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为空间四边形,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与(
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求平行于直线x﹣2y+1=0,且与它的距离为2 的直线方程; (Ⅱ)求经过两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.

查看答案和解析>>

同步练习册答案