精英家教网 > 高中数学 > 题目详情
13.若向量$\vec a,\vec b$满足:$|{\vec a}$$|=1,(\vec a+\vec b)⊥\vec a,(2\vec a+\vec b)⊥\vec b$,则|$\overrightarrow{b}$|=$\sqrt{2}$.

分析 根据向量垂直与向量数量积的关系,转化为向量数量积的关系进行计算即可.

解答 解:∵$|{\vec a}$$|=1,(\vec a+\vec b)⊥\vec a,(2\vec a+\vec b)⊥\vec b$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=0,即$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=0,即$\overrightarrow{a}$•$\overrightarrow{b}$=-1,
(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=0,即$\overrightarrow{b}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{b}$2=-2$\overrightarrow{a}$•$\overrightarrow{b}$=2
则|$\overrightarrow{b}$|=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题主要考查向量模长的计算,根据向量垂直于向量数量积的关系转化为向量数量积的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若数列An:a1,a2,…,an(n∈N*,n≥2)满足a1=0,|ak+1-ak|=1(k=1,2,…,n-1),则称An为L数列.记S(An)=a1+a2+…+an
(1)若A5为L数列,且a5=0,试写出S(A5)的所有可能值;
(2)若An为L数列,且an=0,求S(An)的最大值;
(3)对任意给定的正整数n(n≥2),是否存在L数列An,使得S(An)=0?若存在,写出满足条件的一个L数列An;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数 f(x)=$\left\{\begin{array}{l}{2{x}^{3}+{x}^{2}+1,x≤0}\\{{e}^{ax},x>0}\end{array}\right.$在[-2,3]上的最大值为2,则实数a的取值范围是(  )
A.[$\frac{1}{3}$ln2,+∞)B.[0,$\frac{1}{3}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{3}$ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集R,M={x|x≤0,x∈R},N={x∈Z+|x<$\int_0^2$xdx},则(∁RM)∩N等于(  )
A.{0}B.{1}C.{1,2,}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=xa的图象过点(4,2),an=$\frac{1}{f(n+1)+f(n)}(n∈{N_+})$,数列{an}的前n项和为sn,则s2015为(  )
A.$\sqrt{2014}$-1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2016}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+$\sqrt{3}$ab.
(Ⅰ)求A;
(Ⅱ)设a=$\sqrt{3}$,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等比数列{an}中,an+1<an,a2•a8=6,a4+a6=5,则$\frac{{a}_{5}}{{a}_{7}}$=(  )
A.$\frac{3}{2}$B.$\frac{6}{5}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将4名专家分配到A,B,C三个项目中,则每个项目至少安排一名专家,且甲专家不分配到A 项目的概率等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(1,-1),若$\overrightarrow{b}$•($\overrightarrow{a}$+m$\overrightarrow{b}$)=0,则实数m的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案