精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin 2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.求函数f(x)解析式与对称轴方程.

分析 利用平面向量数量积的坐标运算求得f(x),再由辅助角公式化简,由$2x+\frac{π}{6}=\frac{π}{2}+kπ$求得对称轴方程.

解答 解:∵$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin 2x),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=(2cos2x,$\sqrt{3}$)•(1,sin 2x)=$2co{s}^{2}x+\sqrt{3}sin2x$
=$\sqrt{3}sin2x+cos2x+1$=$2sin(2x+\frac{π}{6})+1$,
由$2x+\frac{π}{6}=\frac{π}{2}+kπ$,解得x=$\frac{π}{6}+\frac{kπ}{2}$,(k∈Z).
∴对称轴方程为x=$\frac{π}{6}+\frac{kπ}{2}$,(k∈Z).

点评 本题考查数量积的坐标运算,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图所示程序框图(算法流程图)的输出结果是(  )
A.3B.123C.38D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记集合A={x,y)|x2+y2≤4}和集合B={(x,y)|x-y-2≤0,x-y+2≥0}表示的平面区域分别为Ω1、Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为(  )
A.$\frac{π-2}{2π}$B.$\frac{π+2}{π}$C.$\frac{2}{π}$D.$\frac{π+2}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cos2x+sinx的值域为(  )
A.[-1,1]B.[1,$\frac{5}{4}$]C.[-1,$\frac{5}{4}$]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若-$\frac{π}{2}<α<β≤\frac{π}{2}$,则$\frac{α-β}{2}$的取值范围是(-π,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cos(x+$\frac{π}{12}$)=-$\frac{5}{13}$,则cos(2x-$\frac{5π}{6}$)$\frac{119}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F是双曲线$C:{x^2}-\frac{y^2}{8}=1$的右焦点,P为左支上任意一点,点$A({0,6\sqrt{6}})$,当△PAF的周长最小时,点P坐标为$({-2,2\sqrt{6}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1),求:
(1)|2$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)向量2$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知空间四边形ABCD中,E,F分别是AC,BD的中点,若AB=CD=4,EF=2,则EF与AB所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案