精英家教网 > 高中数学 > 题目详情

【题目】将一副斜边长相等的直角三角板拼接成如图所示的空间图形,其中.若将它们的斜边重合,让三角形为轴转动,则下列说法不正确的是( )

A. 当平面平面时,两点间的距离为

B. 当平面平面时,与平面所成的角为

C. 在三角形转动过程中,总有

D. 在三角形转动过程中,三棱锥的体积最大可达到

【答案】C

【解析】分析:A选项,结合图象,利用面面垂直的性质及直角三角形斜边上的中线长等于斜边长的一半求解;B选项,先作出与平面所成的角,再求得其为C选项用反证法,假设垂直,根据线面垂直的判定与性质推到是否可能,从而得出结论;D选项根据棱锥的体积公式,在底面积不变的情况下,体积的大小取决于高,当平面ABD平面ABC时,高最大,求出即可.

详解:A选项,取AB中点O,连接DO、CO,

∵AD=BD=,∴DO=1,AB=2,OC=1

平面ABD平面ABC,DO⊥AB,∴DO⊥平面ABC,DO⊥OC,

∴DC=A选项正确;

B选项,过点D作DM⊥AB,连接MC,则∠DCM就是与平面所成的角,因为DM=CM,所以∠DCM=45°,所以B选项正确;

C选项,若ABCD,则AB平面CDO,AB⊥OC,∵O为中点,∴AC=BC,∠BAC=45°与BAC=30°矛盾,C选项错误;

D选项,当DO平面ABC时,棱锥的高最大,此时V棱锥=×AC×BC×DO=××1×1=D选项正确.

故答案为:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, 分别是, 的中点,已知与平面所成的角为 .

1)证明: ∥平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列具有性质;对任意两数中至少有一个是该数列中的一项,给出下列三个结论:

①数列具有性质

②若数列具有性质,则

③若数列具有性质,则

其中,正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是异面直线,给出下列结论:

①一定存在平面,使直线平面,直线平面

②一定存在平面,使直线平面,直线平面

③一定存在无数个平面,使直线与平面交于一个定点,且直线平面.

则所有正确结论的序号为( )

A. ①② B. C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间[0,1]上存在零点,求实数的取值范围;

(2)当时,若对任意∈[0,4],总存在∈[0,4],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数.)

(1)讨论函数的单调性;

(2)当函数有两个零点 时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著. 《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,以“竹筒容米”就是其中一首:家有九节竹一茎,为因盛米不均平;下头三节三升九,上梢四节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升,要按每节依次盛容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,且平面 平面, 中点, .

(Ⅰ)求证:平面平面

(Ⅱ)若二面角的平面角大小满足,求四棱锥的体积.

查看答案和解析>>

同步练习册答案