精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为 的直线l与椭圆交于A、B两点,求|AB|的值.

【答案】解:(I)由题意设椭圆的标准方程为
由已知得:a+c=3, ,解得a=2,c=1,∴b2=a2﹣c2=3,
∴椭圆的标准方程为
(Ⅱ)由已知得直线l的方程为y=x+1,
与椭圆方程联立,可得7x2+8x﹣8=0,
设A(x1 , y1),B(x2 , y2),
则x1+x2=﹣ ,x1x2=﹣
∴|AB|= |x1﹣x2|= =
【解析】(Ⅰ)由题意设出椭圆方程,结合已知列式求得a,b的值,则椭圆方程可求;(Ⅱ)写出直线l的方程,与椭圆方程联立,利用根与系数的关系求出两交点的横坐标的和与积,代入弦长公式得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足f(x)= ,且f(x)=f(x+2),g(x)= ,则方程g(x)=f(x)﹣g(x)在区间[﹣3,7]上的所有零点之和为(
A.12
B.11
C.10
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点AB在直径上,点CD在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗),

1)若要求圆柱体罐子的侧面积最大,应如何截取?

2)若要求圆柱体罐子的体积最大,应如何截取?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零向量 满足| |=1,且( )( + )=
(1)求| |;
(2)当 =- 时,求向量 +2 的夹角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式12x2﹣ax>a2(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,M为PC中点.
(1)求证:BC∥平面PAD;
(2)求证:AP∥平面MBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,其三视图和直观图如图所示,E为BC中点. (Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,底面是直角梯形,

,点上,且.

(1)已知点,且,求证:平面平面

(2)若的面积是梯形面积为,求点E到平面的距离.

查看答案和解析>>

同步练习册答案