精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=sin(2x-$\frac{π}{6}$)-2cos(x-$\frac{π}{4}$)•cos(x+$\frac{π}{4}$)-2sin2x,x∈R,则函数f(x)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2}$,0].

分析 使用诱导公式和二倍角公式化简f(x),根据三角函数的性质得出f(x)的最值.

解答 解:f(x)=sin(2x-$\frac{π}{6}$)-2cos(x-$\frac{π}{4}$)•cos(x-$\frac{π}{4}+\frac{π}{2}$)-2sin2x
=sin(2x-$\frac{π}{6}$)+2cos(x-$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-2sin2x
=sin(2x-$\frac{π}{6}$)+sin(2x-$\frac{π}{2}$)-2sin2x
=sin(2x-$\frac{π}{6}$)-cos2x-2sin2x
=sin(2x-$\frac{π}{6}$)-(1-2sin2x)-2sin2x
=sin(2x-$\frac{π}{6}$)-1.
∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$].
∴当2x-$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)取得最小值-$\frac{3}{2}$,
当2x-$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值0.
∴f(x)的值域是[-$\frac{3}{2}$,0].
故答案为[-$\frac{3}{2}$,0].

点评 本题考查了三角函数的恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:an+1=$\frac{1}{2}$(an+$\frac{4}{{a}_{n}}$);
(I)若a3=$\frac{41}{20}$,求a1的值;
(Ⅱ)若a1=4,记bn=|an-2|,数列{bn}的前n项和为Sn,求证:Sn<$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,点C在椭圆M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上,若点A(-a,0),B(0,$\frac{a}{3}$),且$\overrightarrow{AB}$=$\frac{3}{2}$$\overrightarrow{BC}$.
(1)求椭圆M的离心率;
(2)设椭圆M的焦距为4,P,Q是椭圆M上不同的两点.线段PQ的垂直平分线为直线l,且直线l不与y轴重合.
①若点P(-3,0),直线l过点(0,-$\frac{6}{7}$),求直线l的方程;
②若直线l过点(0,-1),且与x轴的交点为D.求D点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}的前n项和为Sn,若n>1时,2an=an+1+an-1,且S3<S5<S4,则满足Sn-1Sn<0(n>1)的正整数n的值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,g(x)=kx+1,若方程f(x)-g(x)=0有两个不同实根,则实数k的取值范围为($\frac{e-1}{2}$,1)∪(1,e-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)=$\left\{\begin{array}{l}{6x,x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f(f(2))=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中,真命题的个数为(  )
①函数y=x不存在极值点;
②x=0是函数y=|x|的极小值点:
③x=0是函数y=x3的极值点;
④在闭区间[a,b]上连续的函数一定存在最大值与最小值.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+ax-1(a>0).
(Ⅰ)若f(1)=2且f(m)=5.求m2+m-2的值.
(Ⅱ)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}的前n项和为Sn,若a2•a3=2a1,且$\frac{1}{2}{a_4}$与a7的等差中项为$\frac{5}{8}$,则S4=(  )
A.32B.31C.30D.29

查看答案和解析>>

同步练习册答案