精英家教网 > 高中数学 > 题目详情
已知不等式组
x+y-1≤0
x-y+1≥0
y≥0
表示的平面区域为M,若直线y=kx-3k与平面区域M有公共点,则k的取值范围是(  )
A、(0,
1
3
]
B、[-
1
3
,0]
C、(-∞,
1
3
]
D、(-∞,-
1
3
]
考点:简单线性规划
专题:不等式的解法及应用
分析:先画出满足约束条件
x+y-1≤0
x-y+1≥0
y≥0
的平面区域,然后分析平面区域里各个角点,然后将其代入y=kx-3k中,求出y=kx-3k对应的k的端点值即可.
解答: 解:满足约束条件
x+y-1≤0
x-y+1≥0
y≥0
的平面区域如图示:
因为y=kx-3k过定点D(3,0).
所以当y=kx-3k过点A(0,1)时,找到k=-
1
3

当y=kx-3k过点B(1,0)时,对应k=0.
又因为直线y=kx-3k与平面区域M有公共点.
所以-
1
3
≤k≤0.
故选:B.
点评:在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是直线ax+by+c=0(b≠0)上两点,则|AB|等于(  )
A、
|x1-x2|
a2+b2
B、|
x1-x2
b
|
a2+b2
C、|x1-x2|
a2+b2
D、|
x1-x2
a
|
a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知(
3
sinB-cosB)(
3
sinC-cosC)=4cosBcosC.
(Ⅰ) 求角A的大小;
(Ⅱ) 若sinB=psinC,且△ABC是锐角三角形,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=
-7x
x2+x+1

(1)求f(-4)的值;
(2)求当x<0时,f(x)的解析式;
(3)试证明函数y=f(x)(x≥0)在[0,1]上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,且tanA:tanB:tanC=1:2:3.
(1)求角A;
(2)求
b
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(b+1)x+3a是定义在[a-1,2a]的偶函数,则实数a+b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,比较aa,(aaaaaa的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区要建造一条防洪堤,其横断面为等腰梯形(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9
3
平方米,且高度不低于
3
米,记防洪堤横断面的腰长为x(米),则其腰长x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x-2>lgx,命题q:?x∈R,ex>1,则(  )
A、命题p∨q是假命题
B、命题p∧q是真命题
C、命题p∧(¬q)是真命题
D、命题p∨(¬q)是假命题

查看答案和解析>>

同步练习册答案