精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3sin(ωx-
π
6
),(ω>0)和g(x)=2cos(2x+θ)+1的图象的对称轴完全相同,当x∈[0,
π
2
]时,求出f(x)的值域.
考点:正弦函数的定义域和值域,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:根据“对称轴相同可得两函数的周期相同”、周期公式求出ω,再由x得范围求出2x-
π
6
范围,由正弦函数的性质求出f(x)的值域.
解答: 解:由对称轴相同可得两函数的周期相同,
ω
=
2
得ω=2,
f(x)=3sin(2x-
π
6
)

∵0≤x≤
π
2
,∴-
π
6
2x-
π
6
5
6
π

-
1
2
sin(2x-
π
6
)
≤1,∴-
3
2
≤3sin(2x-
π
6
)
≤3
则f(x)的值域为[-
3
2
,3].
点评:本题考查三角函数的周期性与对称性的关系,以及正弦函数得性质,解题的关键是判断出:对称轴相同可得两函数的周期相同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

扇形的半径是
6
,圆心角是60°,则该扇形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知l1,l2,l是同一平面内的三条直线,l1⊥l,l2与l不垂直,求证:l1与l2必相交.
证明:假设l1与l2不相交,则l1∥l2,所以∠1=∠2.
因为l2与l不垂直,
所以∠2≠90°,所以∠1≠90°,
所以l1不是l的垂线,与已知条件矛盾,
所以l1与l2必相交.
本题所采用的证明方法是(  )
A、分析法B、综合法
C、反证法D、归纳法

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(2a+1)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的增区间;
(Ⅱ)讨论函数f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD,F为棱B1B的中点,M为线段AC1的中点.
(Ⅰ)求证:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱锥C1-ABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个焦点将长轴分成2:1的两个部分,且经过点(-3
2
,4),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的方程为
x2
a2
+
y2
b2
=1,离心率e=
2
3
,一个顶点坐标为(0,
5
),以椭圆的右焦点为圆心的圆C与直线3x-4y+4=0相切.
(1)求圆C的方程;
(2)过点Q(0,-3)的直线m与圆C交于不同的两点A(x1,y1),B(x2,y2)且为x1x2+y1y2=3时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
2
].
(1)求
a
b
及|
a
+
b
|;
(2)求函数f(x)=
a
b
-|
a
+
b
|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱AC1中,CC1⊥平面ABC,AB=BC=2,AC=2
2
,BB1=
3
,E、F分别为A1C1、AB的中点.
(Ⅰ)求证:EF∥平面BCC1B1
(Ⅱ)求二面角E-AB-C平面角的大小.

查看答案和解析>>

同步练习册答案