精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|x2+ax-6a2≤0,x∈R},B={x|x-2|<1,x∈R},当B?A时,则实数a的取值范围为(-∞,-1]∪[$\frac{3}{2}$,+∞).

分析 根据题意解得集合B,由集合间的包含关系即可解得答案.

解答 解:∵B={x|x-2|<1,x∈R},
∴B={x|1<x<3,x∈R}
∵B?A,集合A={x|x2+ax-6a2≤0,x∈R},
∴$\left\{\begin{array}{l}{{1}^{2}+a-6{a}^{2}≤0}\\{9+3a-6{a}^{2}≤0}\end{array}\right.$
∴a≥$\frac{3}{2}$或a≤-1,
∴a∈(-∞,-1]∪[$\frac{3}{2}$,+∞).
故答案为:(-∞,-1]∪[$\frac{3}{2}$,+∞).

点评 本题考查集合的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.a,b,c是不同的直线,α,β,γ是不同的平面,以下结论成立的个数是(  )
①a∥b,b∥c⇒a∥c
②a⊥b,b⊥c⇒a∥c
③α⊥β,β⊥γ⇒α∥γ
④α⊥β,α∩β=a,b⊥a⇒b⊥β
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),向量$\overrightarrow{a},\overrightarrow{c}$的夹角是$\frac{π}{3}$,$\overrightarrow{a}$•$\overrightarrow{c}$=2,则|$\overrightarrow{c}$|等于(  )
A.-2B.4C.2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个数列{an}的前n项为$\frac{3}{5}$,$\frac{1}{2}$,$\frac{5}{11}$,$\frac{3}{7}$,$\frac{7}{17}$,…,则猜想它的一个通项公式为an=$\frac{n+2}{3n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.Rt△ABC中,∠C为直角,CD为斜边上的高h,角A、B、C的对边分别为a,b,c,与Rt△ABC相对应的是直角三棱锥P-ABC,即在顶点P处构成3个直二面角.三条侧棱长分别为PA=a,PB=b,PC=c,高PO=h,四面体P-ABC的面△PAB,△PAC,△PBC的面积分别为s1,s2,s3,底面△ABC的面积为s.
(1)在直角三角形ABC中有结论$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$,由此猜想四面体P-ABC中的结论:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;
在直角三角形ABC中有勾股定理c2=a2+b2,类比直角三角形的勾股定理,猜想,在四面体P-ABC中有:$s_1^2+s_2^2+s_3^2={s^2}$成立.
(2)上述猜想都是正确的吗?试证明第二个猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x>1,则x+1+$\frac{4}{x-1}$的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若某几何体的三视图如图所示(单位:cm),则该几何体的体积为(  )
A.8cm3B.4cm3C.$\frac{8}{3}$cm3D.2cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知($\sqrt{2}$+1)m=$\sqrt{2}$xm+ym,其中m,xm,ym∈N*
(1)求证:ym为奇数;
(2)定义:[x]表示不超过实数x的最大整数.已知数列{an}的通项公式为an=[$\sqrt{2}$n],求证:存在{an}的无穷子数列{bn},使得对任意的正整数n,均有bn除以4的余数为1.

查看答案和解析>>

同步练习册答案