分析 根据向量的运算法则以及向量的基本定理进行运算即可.
解答 解:将向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$放入坐标系中,
则向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-1),$\overrightarrow{c}$=(3,4),
∵$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,
∴(3,4)=x(1,2)+y(2,-1),
即$\left\{\begin{array}{l}{x+2y=3}\\{2x-y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{11}{5}}\\{y=\frac{2}{5}}\end{array}\right.$,
则$\frac{x}{y}$=$\frac{11}{2}$,
故答案为:$\frac{11}{2}$.
点评 本题主要考查向量的分解,利用向量的坐标运算是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ln2 | B. | $\sqrt{2}$ | C. | 1+$\sqrt{2}$ | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 5$\sqrt{5}$ | D. | $\frac{13}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>2 | B. | k≥2 | C. | 0≤k≤2 | D. | 0≤k<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com