精英家教网 > 高中数学 > 题目详情
8.已知x,y的一组数据如表所示:
x13678
y12345
(1)从x,y中各取一个数,求x+y≥10的概率:
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为$y=\frac{1}{3}x+1$与$y=\frac{1}{2}x+\frac{1}{2}$,试判断哪条直线拟合程度更好.

分析 (1)算出从x,y各取一个数组成数对的个数,找出满足x+y≥10的数对的个数,然后代入古典概型概率计算公式求解;
(2)分别算出利用两条直线所得的y值与y的实际值的差的平方和,比较大小后即可得到结论.

解答 解:(1)从x,y各取一个数组成数对(x,y),共有25对,
其中满足x+y≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对
所以使x+y≥10的概率为$\frac{9}{25}$;
(2)用$y=\frac{1}{3}x+1$为拟合直线时,所得y值与y的实际值的差的平方和为
S1=($\frac{4}{3}$-1)2+(2-2)2+(3-3)2+($\frac{10}{3}$-4)2+($\frac{11}{3}$-5)2=$\frac{7}{3}$.
用$y=\frac{1}{2}x+\frac{1}{2}$作为拟合直线时,所得y值与y的实际值的差的平方和为
S2=(1-1)2+(2-2)2+($\frac{7}{2}$-3)2+(4-4)2+($\frac{9}{2}$-5)2=$\frac{1}{2}$.
∵S2<S1,故用直线$y=\frac{1}{2}x+\frac{1}{2}$,拟合程度更好.

点评 本题考查了古典概型及其概率计算公式,考查了最小二乘法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3,4五个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,4]任取的一个数,b是从区间[1,4]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知Z是复数,Z+2i,$\frac{Z}{2-i}$均为实数,且复数(Z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
(2)已知两个向量$\overrightarrow{a}$,$\overrightarrow{b}$对应的复数是z1=3和z2=-5+5i,求向量$\vec a$与$\vec b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线ax-by-2=0与曲线y=x3+x在点P(1,2)处的切线互相垂直,则$\frac{a}{b}$的值为(  )
A.$-\frac{1}{4}$B.-4C.3D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$tanθ=\frac{1}{3}$,则sin2θ=(  )
A.$-\frac{3}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是定义在R上以2为周期的偶函数,当x∈[2,3]时,f(x)=x,则x∈[-2,0]时,f(x)的解析式为(  )
A.f(x)=2+|x+1|B.f(x)=2-xC.f(x)=3-|x+1|D.f(x)=2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-x+1
(1)求函数y=f(x)在点(2,f(2))处的切线方程.
(2)求函数y=f(x)在[-2,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(2,x-1)满足$\overrightarrow{a}•\overrightarrow{b}$=-|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线ax+by+c=0与圆O:x2+y2=16相交于两点M、N,若c2=a2+b2,P为圆O上任意一点,则$\overrightarrow{PM}•\overrightarrow{PN}$的取值范围是[-6,10].

查看答案和解析>>

同步练习册答案