精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则A,ω的值分别为(  )
A.2,2B.2,1C.4,2D.2,4

分析 结合函数的图象,由函数的最值求出A,由周期求出ω.

解答 解:由函数的图象可得A=2,
T=$\frac{5π}{12}$-(-$\frac{7π}{12}$)=π,
∴ω=$\frac{2π}{T}$=2,
故选:A.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,x≤0}\\{{x}^{2}-4x+3,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{|lnx|,x>0}\end{array}\right.$,则函数h(x)=g(f(x))-1的零点个数为(  )个.
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|y=lg(2-x)},集合B={x|$\frac{1}{4}$≤2x≤4},则A∩B=(  )
A.{x|x≥-2}B.{x|-2<x<2}C.{x|-2≤x<2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机变量X:B(n,p),若X的数学期望E(X)=2,方差D(X)=$\frac{4}{3}$,则P(X=2)=(  )
A.$\frac{13}{16}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.2015年11月11日,天猫交易额以912.17亿元的成绩刷新了世界纪录.随之快递的订单量也激增.某机构就双十一期间快递公司A的物流速度进行了随机调查,如图是200名受调查者对快递公司A的评分(百分制)的频率分布直方图,则其得分的众数大致为(  )
A.65B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是一个几何体的三视图,若它的体积是3,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,角α的顶点为坐标原点,始边在x轴的正半轴上.
(1)当角α的终边为射线l:y=2$\sqrt{2}$x (x≥0)时,求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,试求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果将直线l向右平移3个单位,再向上平移2个单位后所得的直线与l重合,则该直线l的斜率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos$\frac{29π}{6}$的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案