精英家教网 > 高中数学 > 题目详情
3
-3
(|2x+3|+|3-2x|)dx=
 
考点:定积分
专题:导数的概念及应用
分析:利用偶函数的性质把
3
-3
(|2x+3|+|3-2x|)dx转化为
2∫
3
0
(|2x+3|+|3-2x|)dx
,然后分段去绝对值后求定积分得答案.
解答: 解:令f(x)=(|2x+3|+|3-2x|),
由f(-x)=(|-2x+3|+|3+2x|)=f(x),可得f(x)为偶函数,
3
-3
(|2x+3|+|3-2x|)dx=
2∫
3
0
(|2x+3|+|3-2x|)dx

=
2∫
3
2
0
(2x+3+3-2x)dx+
2∫
3
3
2
(2x+3-3+2x)dx

=
2∫
3
2
0
6dx+
2∫
3
3
2
4xdx
=2×6x
|
3
2
0
+2×2x2
|
3
3
2
=2×6×
3
2
+2(2×32-2×
9
4
)=45

故答案为:45.
点评:本题考查了定积分,考查了偶函数的性质,考查了数学转化思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2
π
4
+x)-
3
cos2x,x∈[
π
4
π
2
],
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为
3
,以顶点A为球心,2为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,内角A,B,C的对边分别为a,b,c.已知∠B为锐角,b=7,ac=40,△ABC外接圆半径为
7
3
3
,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,
a
b
,则
a
-2
b
a
方向上的投影为(  )
A、1
B、
7
7
C、-1
D、
2
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

口袋中有形状、大小相同的3只白球和1只黑球,现一次摸出2只球,则摸出的两球颜色不相同的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-ax2-ex-2,其中e为自然对数的底数.
(Ⅰ) a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)函数h(x)是f(x)的导函数,求函数h(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(x+φ)的图象关于y轴对称的充分必要条件是(  )
A、φ=
π
2
B、φ=π
C、φ=kπ+
π
2
,k∈Z
D、φ=2kπ+
π
2
,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c,A,B,C为非零常数,则“ax2+bx+c>0与Ax2+Bx+C>0解集相同”是“
a
A
=
b
B
=
c
C
”的(  )
A、既不充分也不必要条件
B、充分必要条件
C、必要而不充分条件
D、充分而不必要条件

查看答案和解析>>

同步练习册答案