精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin2
π
4
+x)-
3
cos2x,x∈[
π
4
π
2
],
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值.
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的图像与性质
分析:(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x-
π
3
)+1,由周期公式即可得解.
(2)由x∈[
π
4
π
2
],可得2x-
π
3
∈[
π
6
3
],从而可求f(x)的最大值和最小值.
解答: 解:(1)∵f(x)=2sin2
π
4
+x)-
3
cos2x
=1-cos(
π
2
+2x)-
3
cos2x
=1+sin2x-
3
cos2x
=2sin(2x-
π
3
)+1
∴T=
2
=π.
(2)∵x∈[
π
4
π
2
],
∴2x-
π
3
∈[
π
6
3
],
∴sin(2x-
π
3
max=3,sin(2x-
π
3
min=2.
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的最值的求法,三角函数的图象与性质的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆P与圆A:x2+(y+5)2=49和圆B:x2+(y-5)2=1都外切,则圆P的圆心P的轨迹方程是(  )
A、
y2
9
-
x2
16
=1(y>0)
B、
y2
9
-
x2
16
=1(y<0)
C、
y2
9
-
x2
16
=1
D、
x2
9
-
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别是a,b,c,且满足(sinB-
3
cosB)(sinC-
3
cosC)=4cosBcosC,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)设cn=
an
2n
,求证:数列{cn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(
3
,1),
b
=(2,-2),若(λ
a
+
b
)⊥(λ
a
-
b
),则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=丨x-a丨-2a+1(a∈R),若对任意x∈[1,2],f(x)≥0恒成立,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)+x-3的零点的集合为(  )
A、{-1,3}
B、{-2-
7
,1}
C、{-2+
7
,-1,3,-2-
7
}
D、{-2-
7
,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)分别是R上的奇函数和偶函数,若f(x)+g(x)=log2(1+2x),则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

3
-3
(|2x+3|+|3-2x|)dx=
 

查看答案和解析>>

同步练习册答案