精英家教网 > 高中数学 > 题目详情
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)设cn=
an
2n
,求证:数列{cn}是等差数列.
考点:等比关系的确定,等差关系的确定
专题:等差数列与等比数列
分析:(1)根据数列的递推关系求出bn=an+1-2an的通项公式,结合等比数列的定义即可证明数列{bn}是等比数列;
(2)求出数列{cn}的通项公式,根据等差数列的定义进行证明即可.
解答: 证明:(1)∵Sn+1=4an+2,Sn+2=4an+1+2,
两式相减,得:Sn+2-Sn+1=4(an+1-an),
即:an+2=4an+1-4an
变形得:an+2-2an+1=2(an+1-2an),
∵bn=an+1-2an,即bn+1=2bn
∵a1+a2=4a1+2,即a2=3a1+2=5,
∴b1=a2-2a1=3,
∴数列{bn}是以3为首项,以2为公比的等比数列;
(2)∵cn=
an
2n

cn+1-cn=
an+1
2n+1
-
an
2n
=
bn
2n+1

bn=3•2n-1代入得:cn+1-cn=
3
4
(n=1,2,…)

∴数列{cn}是以
1
2
为首项,
3
4
为公差的等差数列.
点评:本题主要考查等比数列和等差数列的证明,根据等差数列和等比数列的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

汽车以恒定的速率绕圆形广场一周用时2min,每行驶半周,速度方向改变多少度?汽车每行驶10s,速度方向改变多少度?先作一个圆表示汽车运动的轨道,然后作出汽车在相隔10s后两个位置速度矢量的示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前项和为Sn 且
1
Sn
=
1
n
-
1
n+1
 (n∈N*
(Ⅰ)求a1及数列{an}的通项公式an
(Ⅱ)设数列{
an
2n+1
}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

当n=5时,执行如图所示的程序框图,输出的S的值等于(  )
A、2B、4C、7D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

以坐标原点为极点,x的正半轴为极轴建立极坐标系,极坐标方程为ρ=4cosθ的曲线与参数方程
x=-2014-t
y=2015+t
(t为参数)的直线交于A、B,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线x2+y2-2ax•sinα-2by•cosα-a2cos2α=0在x轴上截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2
π
4
+x)-
3
cos2x,x∈[
π
4
π
2
],
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知(a+b+c)(a+b-c)=3ab,则cos(A+B)=(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,内角A,B,C的对边分别为a,b,c.已知∠B为锐角,b=7,ac=40,△ABC外接圆半径为
7
3
3
,求sinA的值.

查看答案和解析>>

同步练习册答案