精英家教网 > 高中数学 > 题目详情
3.若x,y满足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$则z=x-y的取值范围是[-2,2].

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-2y=0}\\{x+y=6}\end{array}\right.$,解得A(4,2).
联立$\left\{\begin{array}{l}{x=2}\\{x+y=6}\end{array}\right.$,解得B(2,4).
化目标函数z=x-y为y=x-z,由图可知,当直线y=x-z过A时,直线在y轴上的截距最小,z有最大值为2.
当直线y=x-z过B时,直线在y轴上的截距最大,z有最小值为-2.
故答案为:[-2,2].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,若复数z满足(1-i)z=1+i,则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A、B、C的对边分别为a,b,c,且2acosC-a=c-2ccosC,若c=3,则a+b的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在甲、乙等5位学生参加的一次社区专场演唱会中,每位学生的节目集中安排在一起演出,若采用抽签的方法随机确定各位学生的演出顺序(序号为1,2,3,4,5).
(1)甲、乙两人的演出序号至少有一个为偶数的概率;
(2)甲、乙两人的演出序号不相邻的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,过点F1作垂直于x轴的直线交椭圆C于M,N两点,若|MN|=3,且椭圆C上的离心率为$\frac{1}{2}$.
(I)求椭圆C的方程;
(Ⅱ)若直线AB的方程为3x+ty-3=0,且与椭圆C交于A,B两点,证明:$\frac{1}{|A{F}_{2}|}$+$\frac{1}{|B{F}_{2}|}$是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[10,14],[15,19],[20,24],[25,29],[30,34]的爱看比例分别为10%,18%,20%,30%,t%.现用这5个年龄段的中间值x代表年龄段,如12代表[10,14],17代表[15,19],根据前四个数据求得x关于爱看比例y的线性回归方程为$\widehaty=(kx-4.68)%$,由此可推测t的值为(  )
A.33B.35C.37D.39

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A={(x,y)|y=cos(arccosx)},B={(x,y)|y=arccos(cosx)},则A∩B=(  )
A.{(x,y)|y=x,-1≤x≤1}B.$\left\{{(x\;,\;\;y)\left|{y=x\;,\;\;-\frac{1}{2}≤x≤\frac{1}{2}}\right.}\right\}$
C.{(x,y)y=x,0≤x≤1}D.{(x,y)|y=x,0≤x≤π}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线 ${C_1}:y={x^2}$与曲线 ${C_2}:y=a{e^x}(a≠0)$存在唯一条公共切线,则a的取值范围为a<0或a=$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,AD=2$\sqrt{3}$,AC=CD=DE=2AB=2,BC=$\sqrt{5}$,F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案