【题目】已知函数
有极值.
(1)求
的取值范围;
(2)若
在
处取得极值,且当
时,
恒成立,求
的取值范围.
【答案】(1)
;(2)
。
【解析】
(1)由已知中函数解析式
,求出导函数f′(x)的解析式,然后根据函数
有极值,方程f′(x)=x2-x+c=0有两个实数解,构造关于c的不等式,解不等式即可得到c的取值范围;
(2)若f(x)在x=2处取得极值,则f′(2)=0,求出满足条件的c值后,可以分析出函数
的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,
恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围.
(1)∵
,
∴
,
因为
有极值,则方程
有两个相异实数解,
从而
,
∴
。∴c的取值范围为
.
(2)∵
在
处取得极值,
∴
,∴
.
∴
,
∵![]()
∴当
时,
,函数单调递增;当
时,
,函数单调递减.∴当x<0时,
在x=-1处取得最大值
,
∵x<0时,
恒成立,
∴
,即
,
∴
或
,∴d的取值范围为
。
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前n项和为
,
,
,数列
满足:
,
,
,数列
的前n项和为![]()
(1)求数列
的通项公式及前n项和;
(2)求数列
的通项公式及前n项和;
(3)记集合
,若M的子集个数为16,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,下列命题正确的是( )
A.若平面
内有无数条直线与直线
平行,则
∥![]()
B.若平面
内有无数条直线与平面
平行,则
∥![]()
C.若平面
内有无数条直线与直线
垂直,则![]()
D.若平面
内有无数条直线与平面
垂直,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)
![]()
(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将所得的图象向左平移
个单位长度后得到函数
的图象.
(1)写出函数
的解析式;
(2)若对任意
,
恒成立,求实数
的取值范围;
(3)求实数
和正整数
,使得
在
上恰有
个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论中,错误的序号是___________.①以直角坐标系中
轴的正半轴为极轴的极坐标系中,曲线C的方程为
,若曲线C上总存在两个点到原点的距离为
,则实数
的取值范围是
;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量
,若
,则
;④已知
为满足
能被9整除的正数
的最小值,则
的展开式中,系数最大的项为第6项.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com