精英家教网 > 高中数学 > 题目详情
如图所示,已知正方形ABCD的边长为32cm,点P在BC上,且BP=16cm,EF⊥AP且与AB、CD分别相交于E、F两点,求EF的长.
考点:相似三角形的性质
专题:选作题,立体几何
分析:由勾股定理求AP的长,过E点作EG⊥CD,垂足为G,利用互余关系证明∠BAP=∠GEF,可证△BAP≌△GEF,从而有EF=AP.
解答: 解:在Rt△ABP中,AP=16
5

过E点作EG⊥CD,垂足为G,
∵∠BAP+∠AEF=90°,∠GEF+∠AEF=90°,
∴∠BAP=∠GEF,
又∵AB=BC=EG,∠B=∠EGF=90°,
∴△BAP≌△GEF,
∴EF=AP=16
5
cm.
点评:本题考查了全等三角形的判断与性质,正方形的性质及勾股定理的运用.关键是作辅助线,构造全等三角形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将形如
.
ab
cd
.
的符号称二阶行列式,现规定
.
ab
cd
.
=ad-bc,函数f(x)=
.
3sinωx
-
3
cosωx
.
在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的单调递增区间;
(2)若-2<f(x)-m<2,在x∈[0,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个半径为R的大球,上层一个,下层三个且两两相切叠放在一起,若在他们围成的空隙中,有一个小球与这四个大球都外切,另有一个更大的球与这四个球都内切,求小球的半径r1和更大球的半径r2

查看答案和解析>>

科目:高中数学 来源: 题型:

用适当的方法表示下列集合.
(1)方程x(x2+2x+1)=0的解;
(2)不等式x-3>4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+ax+2lnx,其中a为实数;
(1)若a=-2,求函数y=f(x)在点x=1处的切线方程;
(2)试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R,则函数f(x)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}为等比数列,an>0,a10a11=e,则lna1+lna2+…+lna20=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(1+sinx)(1+cosx)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)满足对任意x∈R,均有f(1+x)=f(3-x)且f(x)=
m(1-x2),x∈[0,1]
x-1,x∈(1,2]
,若方程3f(x)=x恰有5个实数解,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案