精英家教网 > 高中数学 > 题目详情
已知是空间不同的平面,a、b是空间不同的直线,下列命题错误的是(   )
A.B.
C.D.
C
可得存在,使得,则,所以。同理存在,有。因为异面,所以相交,从而可得,命题A正确;
可得,而,所以,命题B正确;
因为,所以。而,所以,命题D正确;
如图可知,命题C不正确,故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点,且
(1)若,求证:
(2) 求二面角的余弦值;
(3) 若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为1的正方体ABCD—A1B1C1D1中,点P是它的体对角线BD1上一动点,则|AP|+|PC|的最小值是_________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分) 在正方体中,为侧面的中心,为底面的中心,的中点,G为AB的 中点,
(1)求证:平面//平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,那么过点P且平行于直线的直线 (  )
A.只有一条不在平面B.有无数条不一定在
C.只有一条且在平面D.有无数条一定在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体中,平面,且是边长为2的等边三角形,与平面所成角的正弦值为.
(Ⅰ)在线段上存在一点F,使得,试确定F的位置;
(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在直三棱柱中,.
(Ⅰ)求证:;(Ⅱ)求二面角的余弦值大小;
(Ⅲ)在上是否存在点,使得∥平面, 若存在,试给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在棱长为2的正方体中,分别为的中点.
(Ⅰ)求证://平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四棱锥中,四边形是正方形,平面,且分别是的中点.

⑴求证:平面平面
⑵求三棱锥的体积.

查看答案和解析>>

同步练习册答案