精英家教网 > 高中数学 > 题目详情
20.△ABC的内角A,B,C的对边分别是a,b,c,若B=2A,a=1,b=$\sqrt{3}$,则边c=(  )
A.1B.2C.$\sqrt{2}$D.2或1

分析 利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.

解答 解:∵B=2A,a=1,b=$\sqrt{3}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$得:$\frac{1}{sinA}=\frac{\sqrt{3}}{sinB}=\frac{\sqrt{3}}{sin2A}=\frac{\sqrt{3}}{2sinAcosA}$,
∴cosA=$\frac{\sqrt{3}}{2}$,
由余弦定理得:a2=b2+c2-2bccosA,即1=3+c2-3c,
解得:c=2或c=1(经检验不合题意,舍去),
则c=2.
故选:B.

点评 此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(-3,5),B(2,15),在直线l:3x-4y+4=0上存在一点P,使使|PA|+|PB|最小,则
(1)点P的坐标为P$(\frac{8}{3},3)$;
(2)|PA|+|PB|的最小值为5$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,若N=2015时,则输出的数等于(  )
A.$\frac{2015}{2014}$B.$\frac{2014}{2015}$C.$\frac{2016}{2015}$D.$\frac{2015}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,y).则“x=-2且y=-4”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的三内角A、B、C所对应的边分别为a、b、c,函数f(x)=cosx+sin(x-$\frac{π}{6}$),且f(A)=1.
(Ⅰ)求A的大小;
(Ⅱ)若a=1,求$\frac{1}{b}$$+\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z满足z•i=3-i,则在复平面内,复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{{sinx+cosx+|{sinx-cosx}|}}{2}$,则下列结论正确的是(  )
A.f(x)是奇函数B.f(x)在$[{0,\frac{π}{2}}]$上递增C.f(x)是周期函数D.f(x)的值域为[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=$\frac{1}{2}$,Sn=n2an(n∈N*
(1)求a2、a3、a4的值;
(2)推出数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:选择题

已知集合,则( )

A. B.

C. D

查看答案和解析>>

同步练习册答案