精英家教网 > 高中数学 > 题目详情
6.设A、B两点的坐标分别是(-1,-1),(3,7),求线段AB的垂直平分线的方程.

分析 设点P(x,y)为线段AB的垂直平分线上的任意一点,可得|PA|=|PB|,利用两点之间的距离公式即可得出.

解答 解:设点P(x,y)为线段AB的垂直平分线上的任意一点,则|PA|=|PB|,
∴$\sqrt{(x+1)^{2}+(y+1)^{2}}$=$\sqrt{(x-3)^{2}+(y-7)^{2}}$,
化为x+2y-7=0,
∴线段AB的垂直平分线的方程为x+2y-7=0.

点评 本题考查了两点之间的距离公式、线段的垂直平分线的性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知△ABC满足(c-b)(sinC+sinB)=(c-a)sinA,则角B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx+$\frac{1}{x}$,且2<p<q.,求证:对于x∈(p,q),有$\frac{f(x)-f(p)}{x-p}$>$\frac{f(x)-f(q)}{x-q}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将2n按如表的规律填在5列的数表中,设22015排在数表的第n行,第m列,则m+n=506
21222324
28272625
29210211212
216215214213

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.O为△ABC所在平面内一点,且|$\overrightarrow{OA}$|2+|$\overrightarrow{BC}$|2=|$\overrightarrow{OB}$|2+|$\overrightarrow{CA}$|2,求证:$\overrightarrow{AB}⊥\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当-$\frac{π}{2}$<x<$\frac{π}{2}$时,函数y=lg|x|的图象是(  )
A.关于原点对称B.关于x轴对称C.关于y轴对称D.不是对称图形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=ax3+ax2+x-1在实数R上是增函数,则实数a的取值范围是(  )
A.[-1,2]B.[0,3]C.[2,5]D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)满足f(0)=1,且对于任意实数x,y∈R都有:f(xy+1)=f(x)f(y)-f(y)-x+2,若x∈[1,3],则$\frac{f(x-1)}{{f}^{2}(x)+1}$的最大值为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{1}{5}$D.$\frac{3}{17}$

查看答案和解析>>

同步练习册答案