精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\left\{\begin{array}{l}{{ax}^{2}-6x{+a}^{2}+1(x<1)}\\{{x}^{5-2a}(x≥1)}\end{array}\right.$是R上的单调递减函数,则实数a的取值范围是($\frac{5}{2}$,3].

分析 利用函数的单调性的性质,二次函数、幂函数的性质,求得实数a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{ax}^{2}-6x{+a}^{2}+1(x<1)}\\{{x}^{5-2a}(x≥1)}\end{array}\right.$是R上的单调递减函数,
∴$\left\{\begin{array}{l}{a>0}\\{\frac{3}{a}≥1}\\{5-2a<0}\\{{2a}^{2}-5≥1}\end{array}\right.$,求得$\frac{5}{2}$<a≤3,
故答案为:($\frac{5}{2}$,3].

点评 本题主要考查函数的单调性的性质,二次函数、幂函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)猜想Sn的表达式,并用数学归纳法证明;
(2)设bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=1-lnx-$\frac{1}{8}$x2
(Ⅰ)求曲线f(x)在x=1处的切线方程;
(Ⅱ)求曲线f(x)的切线的斜率及倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC的内角A,B,C的对边分别为a,b,c.若c=2,b=$\sqrt{7}$,B=120°,则a等于(  )
A.$\sqrt{6}$B.1C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向右平移$\frac{π}{2}$个单位,沿y轴向下平移1个单位,得到函数y=$\frac{1}{2}$sinx的图象,则y=f(x)的解析式为(  )
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l1:x=-4和直线l2:3x+4y+18=0,P是抛物线y2=16x上的点,P到l1、l2距离之和最小时,P到直线l2的距离是(  )
A.1B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,若a4-a2=-2,a7=-3,则a9=(  )
A.2B.-2C.-5D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x<2},B={x|x<0},那么A∩∁UB=(  )
A.{x|0≤x<2}B.{x|0<x<2}C.{x|x<0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《九章算术》是我国古代的数学巨著,内容极为丰富,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”,则其中分得钱数最多的是(  )
A.$\frac{5}{6}$钱B.1钱C.$\frac{7}{6}$钱D.$\frac{4}{3}$钱

查看答案和解析>>

同步练习册答案