精英家教网 > 高中数学 > 题目详情
19.古代印度数学家婆什迦罗在其所著的《莉拉沃蒂》中有如下题目:“今有人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增,分完后把分掉的钱全部收回,再重新分配,每人恰分得100元,则一共195人.

分析 由题意,给每个人的钱数组成首项为3,公差为1的等差数列,由此求出等差数列的前n项和,列出方程求解.

解答 解:设共有n人,根据题意得;
3n+$\frac{n(n-1)}{2}$=100n,
解得n=195;
∴一共有195人.
故答案为:195.

点评 本题考查了等差数列的通项公式与前n项和的应用问题,也考查了方程思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知复数z=1+i,则z2(1-z)=(  )
A.2B.-2C.2-2iD.-2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程$\sqrt{3}$sinx=cosx的解集为$\{x|x=kπ+\frac{π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.随机变量X的分布列如表,且$EX=\frac{4}{3}$,则a-b=$\frac{1}{3}$.
 X 1 2
 P a b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.市积极倡导学生课外读优秀书籍活动,从参加此活动同学中,抽取60名同学在2015年3月读书活动月的课外读书时间(分钟,均成整数)分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)六组后,得到频率分布直方图(如图),回答下列问题.
(Ⅰ)从频率分布直方图中,估计本次课外课优秀书籍活动时间的中位数;
(Ⅱ)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人课外读书时间之差的绝对值大于10(分钟)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD中点,PA=2AB=2.
(Ⅰ)求证CE∥平面PAB;
(Ⅱ)求三棱锥P-ACE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(wx+θ),(w>0),若两个不等的实数x1,x2∈$\left\{{x\left|{f(x)=\frac{A}{2}}\right.}\right\}$,且|x1-x2|min=π,则f(x)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足z(1-i)=2(i是虚数单位),则z=(  )
A.1+iB.-1+iC.-1-iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{2}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与i的夹角,则$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{2015}}{sin{θ}_{2015}}$的值为$\frac{2015}{1008}$.

查看答案和解析>>

同步练习册答案