精英家教网 > 高中数学 > 题目详情
8.复数z满足z(1-i)=2(i是虚数单位),则z=(  )
A.1+iB.-1+iC.-1-iD.1-i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:∵z(1-i)=2,
∴z(1-i)(1+i)=2(1+i),
∴z=1+i.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某程序框如所示,该程序运行后输出的S的值是(  )
A.$\frac{1}{3}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.古代印度数学家婆什迦罗在其所著的《莉拉沃蒂》中有如下题目:“今有人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增,分完后把分掉的钱全部收回,再重新分配,每人恰分得100元,则一共195人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)是定义在R上的奇函数,且对任意的实数x≥0,总有正常数T,使得f(x+T)=f(x)+T成立,则称f(x)具有“性质p”,已知函数g(x)具有“性质p”,且在[0,T]上,g(x)=x2;若当x∈[-T,4T]时,函数y=g(x)-kx恰有8个零点,则实数k=4$\sqrt{3}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是锐角△ABC单个内角A,B,C的所对的边,且$\sqrt{3}$a=2csinA.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,a+b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|;
(3)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在三棱锥P-ABC中,PA⊥底面ABC,D为BC的中点,PB=PC=$\sqrt{26}$,cos∠BPC=$\frac{5}{13}$,在△PAD中,过A作AM⊥PD于M.
(Ⅰ)求证:AM⊥PC;
(Ⅱ)若AD=3,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{3x-y-2≥0}\\{x+y-6≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最小值3,最大值9B.有最小值9,无最大值
C.有最小值8,无最大值D.有最小值3,最大值8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的结果为(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案