精英家教网 > 高中数学 > 题目详情
17.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{3x-y-2≥0}\\{x+y-6≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最小值3,最大值9B.有最小值9,无最大值
C.有最小值8,无最大值D.有最小值3,最大值8

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.无最大值.
由$\left\{\begin{array}{l}{3x-y-2=0}\\{x+y-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,
即A(2,4).
此时z的最小值为z=2×2+4=8,
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.随机变量X的分布列如表,且$EX=\frac{4}{3}$,则a-b=$\frac{1}{3}$.
 X 1 2
 P a b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足z(1-i)=2(i是虚数单位),则z=(  )
A.1+iB.-1+iC.-1-iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=xlnx,g(x)=-a+xlnb(a>0,b>0).
(I)设h(x)=f(x)+g(x),求h(x)的单调区间;
(II)若存在x0,使x0∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$]且f(x0)≤g(x0)成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.小朋友甲、乙、丙、丁一块玩扑克牌数字计算,把全部红桃1至红桃9等9张扑克牌洗牌后叠起来,每人从中抽取2张,然后报出两数的关系,甲说自己手里的两数相加为10;乙说自己手里的两数相减为1;丙说自己手里的两数乘积为24;丁说自己手里的两数之商为3.由此猜出剩下没有人拿的数字是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.
(1)证明:M,N,C,D1四点共面;
(2)平面MNCD1将此正方体分为两部分,求这两部分的体积
之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{2}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与i的夹角,则$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{2015}}{sin{θ}_{2015}}$的值为$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$;
②任意x∈[0,$\frac{π}{2}$],都有f($\frac{π}{2}$-x)+f($\frac{π}{2}$+x)=4;
③任意x1,x2∈($\frac{π}{2}$,π),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.
其中所有正确结论的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若α∈(0,$\frac{π}{2}$),且cos2α+cos($\frac{π}{2}$+2α)=$\frac{3}{10}$,则tanα(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案