9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2}{x+1}$£¬µãOÎª×ø±êÔ­µã£¬µãAn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©£¬ÏòÁ¿$\overrightarrow{i}$=£¨0£¬1£©£¬¦ÈnÊÇÏòÁ¿$\overrightarrow{O{A}_{n}}$ÓëiµÄ¼Ð½Ç£¬Ôò$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄֵΪ$\frac{2015}{1008}$£®

·ÖÎö ¸ù¾ÝÌâÒ⣬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬»¯¼ò$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$Ϊ$\frac{f£¨n£©}{n}$£¬
´Ó¶øÇó³ö$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄÖµ£®

½â´ð ½â£º¸ù¾ÝÌâÒâµÃ£¬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬
¡à$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$=$\frac{sin£¨\frac{¦Ð}{2}{-¦È}_{n}£©}{cos£¨\frac{¦Ð}{2}{-¦È}_{n}£©}$
=tan£¨$\frac{¦Ð}{2}$-¦Èn£©
=$\frac{f£¨n£©}{n}$
=$\frac{2}{n£¨n+1£©}$
=2£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬
¡à$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$=2£¨1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+¡­+$\frac{1}{2015}$-$\frac{1}{2016}$£©
=2£¨1-$\frac{1}{2016}$£©
=$\frac{2015}{1008}$£®
¹Ê´ð°¸Îª£º$\frac{2015}{1008}$£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßµÄÇãб½ÇÓëбÂʵÄÓ¦ÓÃÎÊÌâÒÔ¼°Çóº¯ÊýÖµµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¹Å´úÓ¡¶ÈÊýѧ¼ÒÆÅʲåÈÂÞÔÚÆäËùÖøµÄ¡¶ÀòÀ­ÎÖµÙ¡·ÖÐÓÐÈçÏÂÌâÄ¿£º¡°½ñÓÐÈËÄÃÇ®ÔùÈË£¬µÚÒ»È˸ø3Ôª£¬µÚ¶þÈ˸ø4Ôª£¬µÚÈýÈ˸ø5Ôª£¬ÆäÓàÒÀ´ÎµÝÔö£¬·ÖÍêºó°Ñ·ÖµôµÄǮȫ²¿Êջأ¬ÔÙÖØÐ·ÖÅ䣬ÿÈËÇ¡·ÖµÃ100Ôª£¬ÔòÒ»¹²195ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÈýÀâ×¶P-ABCÖУ¬PA¡Íµ×ÃæABC£¬DΪBCµÄÖе㣬PB=PC=$\sqrt{26}$£¬cos¡ÏBPC=$\frac{5}{13}$£¬ÔÚ¡÷PADÖУ¬¹ýA×÷AM¡ÍPDÓÚM£®
£¨¢ñ£©ÇóÖ¤£ºAM¡ÍPC£»
£¨¢ò£©ÈôAD=3£¬ÇóÈýÀâ×¶P-ABCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑ֪ʵÊýx¡¢yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y¡Ü0}\\{3x-y-2¡Ý0}\\{x+y-6¡Ý0}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=2x+y£¨¡¡¡¡£©
A£®ÓÐ×îСֵ3£¬×î´óÖµ9B£®ÓÐ×îСֵ9£¬ÎÞ×î´óÖµ
C£®ÓÐ×îСֵ8£¬ÎÞ×î´óÖµD£®ÓÐ×îСֵ3£¬×î´óÖµ8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¼¯ºÏA={1£¬3£¬4£¬5}£¬¼¯ºÏB={x¡ÊZ|x2-4x-5£¼0}£¬ÔòA¡ÉBµÄ×Ó¼¯¸öÊýΪ£¨¡¡¡¡£©
A£®2B£®4C£®8D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏ$S=\left\{{x\left|{|{x-1}|}\right.¡Ü2£¬x¡ÊR}\right\}£¬T=\left\{{x\left|{\frac{5}{x+1}¡Ý1}\right.£¬x¡Êz}\right\}$£¬ÔòS¡ÉTµÈÓÚ£¨¡¡¡¡£©
A£®{x|0£¼x¡Ü3£¬x¡Êz}B£®{x|0¡Üx¡Ü3£¬x¡Êz}C£®{x|-1¡Üx¡Ü0£¬x¡Êz}D£®{x|-1¡Üx£¼0£¬x¡Êz}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®·½³Ìsinx-$\sqrt{3}$cosx=1£¬x¡Ê£¨-¦Ð£¬¦Ð£©µÄ½â¼¯Îªx=$\frac{¦Ð}{2}$»ò-$\frac{5¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®8B£®9C£®10D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ï±í¼Ç¼ÁËijѧÉú½øÈë¸ßÈýÒÔÀ´¸÷´ÎÊýѧ¿¼ÊԵijɼ¨
¿¼ÊÔµÚ´Î123456789101112
³É¼¨£¨·Ö£©657885878899909493102105116
½«µÚ1´Îµ½µÚ12´ÎµÄ¿¼ÊԳɼ¨ÒÀ´Î¼ÇΪa1£¬a2£¬¡­£¬a12£®Í¼2ÊÇͳ¼ÆÉϱíÖгɼ¨ÔÚÒ»¶¨·¶Î§ÄÚ¿¼ÊÔ´ÎÊýµÄÒ»¸öËã·¨Á÷³Ìͼ£®ÄÇôËã·¨Á÷³ÌͼÊä³öµÄ½á¹ûÊÇ7£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸