分析 (Ⅰ)延长DC、AB交于N,连接PN,证明EC∥PN,利用线面平行的判定定理证明CE∥平面PAB;
(Ⅱ)证明CD⊥平面PAC,求出E到平面PAC距离,即可求三棱锥P-ACE体积.
解答
(Ⅰ)证明:延长DC、AB交于N,连接PN
∵∠NAC=∠DAC=60°,AC⊥CD,
∴C为ND中点.
∵E为PD中点,∴EC∥PN.
∵EC?平面PAB,PN?平面PAB,
∴EC∥平面PAB…(6分)
(2)解:$AC=2AB=2,AD=2AC=4,CD=2\sqrt{3}$
∵PA⊥平面ABCD,∴PA⊥CD,
∵CD⊥AC,CA∩PA=A
∴CD⊥平面PAC,
∵E为PD中点,∴E到平面PAC距离为$\frac{1}{2}CD=\sqrt{3}$,
∵${S_{△PAC}}=\frac{1}{2}×2×2=2$,
∴$V=\frac{1}{3}Sh=\frac{2}{3}\sqrt{3}$ …(12分)
点评 本题考查证明线面平行、线面垂直的方法,考查三棱锥P-ACE体积,正确运用线面平行的判定定理是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{6})$ | B. | $(-\frac{1}{6},0)$ | C. | $(-∞,0)∪(\frac{1}{6},+∞)$ | D. | $(-∞,\frac{1}{6})∪(0,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤3,x∈z} | B. | {x|0≤x≤3,x∈z} | C. | {x|-1≤x≤0,x∈z} | D. | {x|-1≤x<0,x∈z} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com