精英家教网 > 高中数学 > 题目详情
4.四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD中点,PA=2AB=2.
(Ⅰ)求证CE∥平面PAB;
(Ⅱ)求三棱锥P-ACE体积.

分析 (Ⅰ)延长DC、AB交于N,连接PN,证明EC∥PN,利用线面平行的判定定理证明CE∥平面PAB;
(Ⅱ)证明CD⊥平面PAC,求出E到平面PAC距离,即可求三棱锥P-ACE体积.

解答 (Ⅰ)证明:延长DC、AB交于N,连接PN
∵∠NAC=∠DAC=60°,AC⊥CD,
∴C为ND中点.
∵E为PD中点,∴EC∥PN.
∵EC?平面PAB,PN?平面PAB,
∴EC∥平面PAB…(6分)
(2)解:$AC=2AB=2,AD=2AC=4,CD=2\sqrt{3}$
∵PA⊥平面ABCD,∴PA⊥CD,
∵CD⊥AC,CA∩PA=A
∴CD⊥平面PAC,
∵E为PD中点,∴E到平面PAC距离为$\frac{1}{2}CD=\sqrt{3}$,
∵${S_{△PAC}}=\frac{1}{2}×2×2=2$,
∴$V=\frac{1}{3}Sh=\frac{2}{3}\sqrt{3}$    …(12分)

点评 本题考查证明线面平行、线面垂直的方法,考查三棱锥P-ACE体积,正确运用线面平行的判定定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a(x-1)-21nx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,1)上无零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,则输出结果为(  )
A.15B.16C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}$+a仅一个零点,则a的取值范围为(  )
A.$(0,\frac{1}{6})$B.$(-\frac{1}{6},0)$C.$(-∞,0)∪(\frac{1}{6},+∞)$D.$(-∞,\frac{1}{6})∪(0,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.古代印度数学家婆什迦罗在其所著的《莉拉沃蒂》中有如下题目:“今有人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增,分完后把分掉的钱全部收回,再重新分配,每人恰分得100元,则一共195人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若logxy=-2,则x2+y的值域为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)是定义在R上的奇函数,且对任意的实数x≥0,总有正常数T,使得f(x+T)=f(x)+T成立,则称f(x)具有“性质p”,已知函数g(x)具有“性质p”,且在[0,T]上,g(x)=x2;若当x∈[-T,4T]时,函数y=g(x)-kx恰有8个零点,则实数k=4$\sqrt{3}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|;
(3)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合$S=\left\{{x\left|{|{x-1}|}\right.≤2,x∈R}\right\},T=\left\{{x\left|{\frac{5}{x+1}≥1}\right.,x∈z}\right\}$,则S∩T等于(  )
A.{x|0<x≤3,x∈z}B.{x|0≤x≤3,x∈z}C.{x|-1≤x≤0,x∈z}D.{x|-1≤x<0,x∈z}

查看答案和解析>>

同步练习册答案