分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y-2≤0}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{y=2}\\{x-y=0}\end{array}\right.$,解得B(2,2),
A(0,2),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最小,z有最小值为2;
当直线y=-2x+z过B时,直线在y轴上的截距最大,z有最大值为6.
∴z的取值范围是[2,6].
故答案为:[2,6].
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com