| A. | 6 | B. | 4 | C. | $\frac{25}{3}$ | D. | -$\frac{7}{3}$ |
分析 利用同角三角函数关系,把函数转换成关于cosx的函数,利用换元法,根据cosx的范围求得函数的最小值和最大值.
解答 解:y=-3sin2x-4cosx+2=3cos2x-3-4cosx+3=3(cosx-$\frac{2}{3}$)2-$\frac{4}{3}$,
∵-1≤cosx≤1,令cosx=t,则-1≤t≤1,
f(t)=3(t-$\frac{2}{3}$)2-$\frac{4}{3}$,在[-1,$\frac{2}{3}$]单调递减,在[$\frac{2}{3}$,1]上单调递增,
∴f(t)min=f($\frac{2}{3}$)=-$\frac{4}{3}$,f(t)max=f(-1)=7,
∴f(t)max-(t)min=7-(-$\frac{4}{3}$)=$\frac{25}{3}$
故选:C
点评 本题主要考查了三角函数的性质,二次函数的性质.解题过程采用了换元法,把三角函数问题转换为二次函数的问题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,0) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2]∪(2,+∞) | D. | [-1,0]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | $(-\frac{1}{2},\;2)$ | C. | $(-2,\;-\frac{1}{2})$ | D. | $(-\frac{1}{2},\;1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com