精英家教网 > 高中数学 > 题目详情
10.某几何体的三视图如图所示,若该几何体的所有顶点都在一个球面上,则该球面的表面积为(  )
A.20πB.$\frac{44}{3}$πC.$\frac{28}{3}$πD.

分析 由已知中的三视图可知该几何体是一个三棱柱,求出其外接球半径,可得答案.

解答 解:由已知中的三视图可知该几何体是一个三棱柱,
底面棱长和高均为2,
故底面外接圆半径r=$\frac{2\sqrt{3}}{3}$,球心到底面的距离d=1,
故球半径R=$\sqrt{{d}^{2}+{r}^{2}}$=$\frac{\sqrt{21}}{3}$,
故球的表面积S=4πR2=$\frac{28}{3}$π,
故选:C

点评 本题考查的知识点是球的体积和表面积,球内接多面体,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则该抛物线的焦点到准线的距离为(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,2Sn=3an-2n(n∈N+).
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=an+2n+1,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{2}-\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在三棱锥A-BCD中,A在平面BCD内的投影恰为BD的中点,CD⊥BD,AD⊥AB,延长DA至P,使DA=AP.
(1)求证:PB⊥平面BCD;
(2)若$BD=CD=\sqrt{2}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,点P为圆E:(x-1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.
(Ⅰ)当r在(1,+∞)内变化时,求点Q的轨迹方程;
(Ⅱ)已知点A(-1,1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将y=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的图象向右平移φ(0<φ<π)个单位得到函数y=2sinx(sinx-cosx)-1的图象,则φ=$\frac{13π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=a-x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.[-2,-1]B.[-1,1]C.[1,3]D.[3,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设常数θ∈(0,$\frac{π}{2}$),函数f(x)=2cos2(θ-$\frac{3}{2}$x)-1,且对任意实数x,f(x)=f($\frac{π}{3}$-x)恒成立.
(1)求θ值;
(2)试把f(x)表示成关于sinx的关系式;
(3)若x∈(0,π)时,不等式f(x)>2a•f($\frac{2x}{3}$)-13f($\frac{x}{3}$)恒成立,求实数a的范围.

查看答案和解析>>

同步练习册答案